Arithmetical finite-size corrections in one-dimensional quantum systems

1990 ◽  
Vol 145 (6-7) ◽  
pp. 309-313 ◽  
Author(s):  
Ph. Audit ◽  
T.T. Truong
1995 ◽  
Vol 73 (3-4) ◽  
pp. 245-247
Author(s):  
K. L. Poon ◽  
K. Young ◽  
D. Kiang

The thermodynamics of N bosons in a length L in one dimension, with repulsive delta-function interaction, is studied numerically for finite N, L. The results show the nature of finite-size corrections and how the thermodynamic limit is approached, and hopefully will be of some guidance in seeking the solution of a more general model.


2016 ◽  
Vol 30 (25) ◽  
pp. 1630007 ◽  
Author(s):  
P. Schlottmann

We consider a gas mixture consisting of spinless fermions and bosons in one dimension interacting via a repulsive [Formula: see text]-function potential. Bosons and fermions are assumed to have equal masses and the interaction strength between bosons and among bosons and fermions is the same. Using the Bethe ansatz solution of the model, we study the ground state properties, the dressed energy potentials for the two bands of rapidities, the elementary particle and hole excitations, the thermodynamics, the finite size corrections to the ground state energy leading to the conformal towers, and the asymptotic behavior at large distances of some relevant correlation functions. The low-energy excitations of the system form a two-component Luttinger liquid. In an elongated optical trap the gas phase separates as a function of the distance from the center of the trap.


1992 ◽  
Vol 9 (8) ◽  
pp. 393-396
Author(s):  
Liu Yimin ◽  
Pu Fuque (Fu-Cho Pu) ◽  
Su Hang

2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Benoit Estienne ◽  
Yacine Ikhlef ◽  
Alexi Morin-Duchesne

In the presence of a conserved quantity, symmetry-resolved entanglement entropies are a refinement of the usual notion of entanglement entropy of a subsystem. For critical 1d quantum systems, it was recently shown in various contexts that these quantities generally obey entropy equipartition in the scaling limit, i.e. they become independent of the symmetry sector. In this paper, we examine the finite-size corrections to the entropy equipartition phenomenon, and show that the nature of the symmetry group plays a crucial role. In the case of a discrete symmetry group, the corrections decay algebraically with system size, with exponents related to the operators' scaling dimensions. In contrast, in the case of a U(1) symmetry group, the corrections only decay logarithmically with system size, with model-dependent prefactors. We show that the determination of these prefactors boils down to the computation of twisted overlaps.


2016 ◽  
Vol 69 (7) ◽  
pp. 1212-1218 ◽  
Author(s):  
Xi-Jing Liu ◽  
Bing-Quan Hu ◽  
Sam Young Cho ◽  
Huan-Qiang Zhou ◽  
Qian-Qian Shi

Sign in / Sign up

Export Citation Format

Share Document