An optimal column-generation-with-ranking algorithm for very large scale set partitioning problems in traffic assignment

1989 ◽  
Vol 41 (2) ◽  
pp. 232-239 ◽  
Author(s):  
Celso Carneiro Ribeiro ◽  
Michel Minoux ◽  
Manoel Camillo Penna
2001 ◽  
Vol 13 (3) ◽  
pp. 191-209 ◽  
Author(s):  
Jeff T. Linderoth ◽  
Eva K. Lee ◽  
Martin W. P. Savelsbergh

2006 ◽  
Vol 12 (1) ◽  
pp. 18-22
Author(s):  
Luca Coslovich ◽  
Raffaele Pesenti ◽  
Walter Ukovich

In this paper we consider large‐scale set partitioning problems. Our main purpose is to show that real‐world set partitioning problems originating from the container‐trucking industry are easier to tackle in respect to general ones. We show such different behavior through computational experiments: in particular, we have applied both a heuristic algorithm and some exact solution approaches to real‐world instances as well as to benchmark instances from Beasley OR‐library. Moreover, in order to gain an insight into the structure of the real-world instances, we have performed and evaluated various instance perturbations.


2021 ◽  
Vol 5 (1) ◽  
pp. 14
Author(s):  
Christos Makris ◽  
Georgios Pispirigos

Nowadays, due to the extensive use of information networks in a broad range of fields, e.g., bio-informatics, sociology, digital marketing, computer science, etc., graph theory applications have attracted significant scientific interest. Due to its apparent abstraction, community detection has become one of the most thoroughly studied graph partitioning problems. However, the existing algorithms principally propose iterative solutions of high polynomial order that repetitively require exhaustive analysis. These methods can undoubtedly be considered resource-wise overdemanding, unscalable, and inapplicable in big data graphs, such as today’s social networks. In this article, a novel, near-linear, and highly scalable community prediction methodology is introduced. Specifically, using a distributed, stacking-based model, which is built on plain network topology characteristics of bootstrap sampled subgraphs, the underlined community hierarchy of any given social network is efficiently extracted in spite of its size and density. The effectiveness of the proposed methodology has diligently been examined on numerous real-life social networks and proven superior to various similar approaches in terms of performance, stability, and accuracy.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Lei Luo ◽  
Chao Zhang ◽  
Yongrui Qin ◽  
Chunyuan Zhang

With the explosive growth of the data volume in modern applications such as web search and multimedia retrieval, hashing is becoming increasingly important for efficient nearest neighbor (similar item) search. Recently, a number of data-dependent methods have been developed, reflecting the great potential of learning for hashing. Inspired by the classic nonlinear dimensionality reduction algorithm—maximum variance unfolding, we propose a novel unsupervised hashing method, named maximum variance hashing, in this work. The idea is to maximize the total variance of the hash codes while preserving the local structure of the training data. To solve the derived optimization problem, we propose a column generation algorithm, which directly learns the binary-valued hash functions. We then extend it using anchor graphs to reduce the computational cost. Experiments on large-scale image datasets demonstrate that the proposed method outperforms state-of-the-art hashing methods in many cases.


Sign in / Sign up

Export Citation Format

Share Document