Sequence of the complete osp operon encoding two major outer membrane proteins of a European Borrelia burgdorferi isolate (B29)

Gene ◽  
1992 ◽  
Vol 120 (1) ◽  
pp. 127-128 ◽  
Author(s):  
Waltraud Fellinger ◽  
Bernhard Redl ◽  
Georg Stöffler
2008 ◽  
Vol 190 (7) ◽  
pp. 2619-2623 ◽  
Author(s):  
Ján Štěrba ◽  
Marie Vancová ◽  
Nataliia Rudenko ◽  
Maryna Golovchenko ◽  
Tammy-Lynn Tremblay ◽  
...  

ABSTRACT We investigated the presence of glycoproteins in Borrelia burgdorferi. We did not find any evidence for glycosylation of the major outer membrane proteins OspA and OspB or the structural flagellar proteins FlaB and FlaA. We suggest that glycoproteins present on the surface of B. burgdorferi may be tightly bound culture medium glycoproteins.


2005 ◽  
Vol 12 (11) ◽  
pp. 1269-1274 ◽  
Author(s):  
Mindy L. Rawlins ◽  
Cecilia Gerstner ◽  
Harry R. Hill ◽  
Christine M. Litwin

ABSTRACT Yersinia enterocolitica and Yersinia pseudotuberculosis have been identified as causative organisms of reactive arthritis in humans. We evaluated a Western blot assay which uses Yersinia outer membrane proteins as antigens for the detection of Yersinia antibodies as a replacement for the complement fixation (CF) assay. Clinical agreement, sensitivity, and specificity were determined by testing 19 positive and 21 negative serum samples by the CF assay, Western blot assay, and enzyme-linked immunosorbent assay (ELISA). The CF assay and ELISA were compared to the Western blot assay, which was the reference method used in this study. Sera with antibodies that could potentially cross-react with Yersinia were also tested by the Western blot assay. The agreement, sensitivity, and specificity of the CF method were 61%, 26%, and 95%, respectively; and those for the ELISA were 89%, 95%, and 82%, respectively. The prevalences of Yersinia antibodies in 50 healthy donors were 6% for immunoglobulin G (IgG), 2% for IgA, and 2% for IgM. Sera positive for Bartonella henselae, Brucella, Chlamydia pneumoniae, and Rickettsia rickettsii antibodies showed cross-reactivity by the Western blot assay. The highest cross-reactivity was observed with Borrelia burgdorferi; 5 of 11 (45%) specimens were cross-reactive by the IgM-specific assay. Overall, the Western blot assay performs acceptably and is more sensitive than the CF assay, warranting replacement of the CF assay in the laboratory. Due to the evidence of cross-reactivity, particularly with B. burgdorferi, which can cause an oligoarthritis similar to reactive arthritis, the diagnosis of reactive arthritis should be based on clinical findings and complete serologic analysis of the potential causative infectious pathogens.


2011 ◽  
Vol 80 (1) ◽  
pp. 359-368 ◽  
Author(s):  
A. Toledo ◽  
J. L. Coleman ◽  
C. J. Kuhlow ◽  
J. T. Crowley ◽  
J. L. Benach

ABSTRACTThe agent of Lyme disease,Borrelia burgdorferi, has a number of outer membrane proteins that are differentially regulated during its life cycle. In addition to their physiological functions in the organism, these proteins also likely serve different functions in invasiveness and immune evasion. In borreliae, as well as in other bacteria, a number of membrane proteins have been implicated in binding plasminogen. The activation and transformation of plasminogen into its proteolytically active form, plasmin, enhances the ability of the bacteria to disseminate in the host. Outer membrane vesicles ofB. burgdorfericontain enolase, a glycolytic-cycle enzyme that catalyzes 2-phosphoglycerate to form phosphoenolpyruvate, which is also a known plasminogen receptor in Gram-positive bacteria. The enolase was cloned, expressed, purified, and used to generate rabbit antienolase serum. The enolase binds plasminogen in a lysine-dependent manner but not through ionic interactions. Although it is present in the outer membrane, microscopy and proteinase K treatment showed that enolase does not appear to be exposed on the surface. However, enolase in the outer membrane vesicles is accessible to proteolytic degradation by proteinase K. Samples from experimentally and tick-infected mice and rabbits as well as from Lyme disease patients exhibit recognition of enolase in serologic assays. Thus, this immunogenic plasminogen receptor released in outer membrane vesicles could be responsible for external proteolysis in the pericellular environment and have roles in nutrition and in enhancing dissemination.


1995 ◽  
Vol 96 (5) ◽  
pp. 2380-2392 ◽  
Author(s):  
J T Skare ◽  
E S Shang ◽  
D M Foley ◽  
D R Blanco ◽  
C I Champion ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document