Water table control, reuse and disposal of drainage water in Haryana

1988 ◽  
Vol 14 (1-4) ◽  
pp. 537-545 ◽  
Author(s):  
J.H. Boumans ◽  
J.W. van Hoorn ◽  
G.P. Kruseman ◽  
B.S. Tanwar
1993 ◽  
Vol 28 (3-5) ◽  
pp. 497-507 ◽  
Author(s):  
C. S. Tan ◽  
C. F. Drury ◽  
J. D. Gaynor ◽  
T. W. Welacky

Corn management practices, incorporating annual ryegrass intercrop, conservation tillage and water table management, were evaluated to reduce herbicide and N0−3 losses through surface runoff and tile drainage. The integrated management system being developed at Harrow in S.W. Ontario reduced herbicide input 50% by banding the chemical over the seed row. Runoff events close to herbicide application contained high concentrations of atrazine, metribuzin and metolachlor. However, the volume of runoff was low during the 1991 growing season, therefore herbicide loss was low (<2% of applied). The three herbicides rapidly dissipated in the soil so that subsequent runoff events transported little herbicide in the runoff water. The total quantity of de-ethyl atrazine loss was lower from soil saver than moldboard plow. No water table control or intercrop effects were found in 1991 for herbicide loss because of the drought Tile drainage resulted in a greater volume of water and loss of N0−3 than with surface runoff. Consequently, over 97% of the total N0−3 loss occurred through tile drainage. The flow weighted N0−3 concentration in tile drainage water was 22.5 mg N L−1 for the drainage treatments and 15.1 mg N L−1 for the water table control treatments from Nov. 1, 1991 till April 30, 1992. During this time period, N0−3 loss through tile drainage was 57.8 kg N ha−1 from the drainage treatments and 36.3 kg N ha−1 from the water table control treatments. Therefore, the water table control treatment reduced the flow weighted N0−3 concentration in tile drainage water by 33% and total N0−3 loss by 37%. The water table control treatments combined with soil saver tillage resulted in lower concentrations and losses of N0−3 than with any other treatments.


2006 ◽  
Vol 41 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Nicolas Stämpfli ◽  
Chandra A. Madramootoo

Abstract Recent studies have shown subirrigation (SI) to be effective in reducing nitrate losses from agricultural tile drainage systems. A field study was conducted from 2001 to 2002 in southwestern Québec to evaluate the effect of SI on total dissolved phosphorus (TDP) losses in tile drainage. In an agricultural field with drains installed at a 1-m depth, a SI system with a design water table depth (WTD) of 0.6 m below the soil surface was compared with conventional free drainage (FD). Subirrigation increased drainage outflow volumes in the autumn, when drains were opened and water table control was interrupted for the winter in the SI plots. Outflows were otherwise similar for both treatments. Throughout the study, the TDP concentrations in tile drainage were significantly higher with SI than with FD for seven out of 17 of the sampling dates for which data could be analyzed statistically, and they were never found to be lower for plots under SI than for plots under FD. Of the seven dates for which the increase was significant, six fell in the period during which water table control was not implemented (27 September 2001 to 24 June 2002). Hence, it appears that SI tended to increase TDP concentrations compared with FD, and that it also had a residual effect between growing seasons. Almost one-third of all samples from the plots under SI exceeded Québec's surface water quality standard (0.03 mg TDP L-1), whereas concentrations in plots under FD were all below the standard. Possible causes of the increase in TDP concentrations in tile drainage with SI are high TDP concentrations found in the well water used for SI and a higher P solubility caused by the shallow water table.


Author(s):  
Hamed Nozari ◽  
Abdolmajid Liaghat ◽  
Saeed Azadi ◽  
Azin Poursadri ◽  
Behzad Ghanbarian

Abstract Accurate simulations of wastewater quality and quantity, particularly in saline and semi-arid areas, are important in agricultural water management. In this study a system dynamics (SD) approach was proposed to simulate drainage water and groundwater salinities, water table fluctuation, and drainage discharge at field-scale. The results of the SD approach were compared with results from DRAINMOD-S, a computer simulation model. For model validation, earlier experimental data from two field units were used. The field units each contained three rows of piezometers. During irrigation, daily water table fluctuation, drainage discharge, irrigation and drainage water salinity, and the salinity in each piezometer, were measured. The SD approach simulated these parameters more accurately than DRAINMOD-S for both units.


2017 ◽  
Vol 60 (3) ◽  
pp. 813-821 ◽  
Author(s):  
Samaneh Saadat ◽  
Laura Bowling ◽  
Jane Frankenberger ◽  
Kyle Brooks

Abstract. Controlled drainage is a best management practice that decreases nitrate loads from subsurface drainage, but questions remain about optimal operation strategies. One unanswered question is whether the outlet should be lowered prior to or directly after a rainfall event to reduce the amount of time that the water table is at a level that would be detrimental to either trafficability or crop yield. The objective of this study was to determine how much controlled drainage lengthens the time needed for the water table to fall after a rainfall event, to inform possible improvement in the management of controlled drainage systems. This objective was addressed using water table recession rates from two pairs of controlled and free-draining fields located at the Davis Purdue Agricultural Center in Indiana over a period of nine years (2006-2014). At each pair, comparison of mean recession rates from the two fields indicated that controlled drainage reduced recession rate. The significance of the relationship between paired observations and the effect of controlled drainage was determined by a paired watershed approach using analysis of variance (ANOVA) and covariance (ANCOVA). Raising the outlet of the subsurface drainage system decreased the mean rate of water table recession by 29% to 62%, increasing the time needed for the water table level to fall from the surface to 30 and 60 cm depths by approximately 12 to 26 h and 24 to 53 h, respectively. Based on these results, it can be concluded that lowering the outlet before storm events would reduce the amount of time that the water table is at a detrimental level for either crop growth or trafficability. However, the trade-off between costs and benefits of active management depends on the sensitivity of the crop and probability of a severe storm. Keywords: Drainage water management, Managed drainage, Paired watershed approach, Tile drainage, Water table drawdown.


2010 ◽  
Author(s):  
Matthew Helmers ◽  
Reid Christianson ◽  
Greg Brenneman ◽  
Delise Lockett ◽  
Carl Peterson

Sign in / Sign up

Export Citation Format

Share Document