Solar radiation interception, dry matter production and yield in pigeonpea (Cajanus cajan (L.) Millspaugh)

1983 ◽  
Vol 6 ◽  
pp. 171-178 ◽  
Author(s):  
G. Hughes ◽  
J.D.H. Keatinge
1987 ◽  
Vol 108 (2) ◽  
pp. 419-424 ◽  
Author(s):  
G. Hughes ◽  
J. D. H. Keatinge ◽  
P. J. M. Cooper ◽  
N. F. Dee

SummaryAn analysis of chickpea experiments carried out in northern Syria during the 1980–1 and 1981–2 growing seasons showed that both intercepted solar radiation and its rate of conversion to dry matter were variable components of dry-matter production. Among the sources of variation in the experiments, the most important factor affecting both interception and utilization of solar radiation was site. Winter planting also led to increased solar radiation interception and utilization. Used in conjunction with chickpea lines resistant to blight, winter planting seems likely to lead to increased productivity. In higher rainfall areas, where the crop is usually grown, such an increase would be of commercial significance. In drier areas, winter planting would enable the cultivation of chickpea as a subsistence crop.


2019 ◽  
Vol 11 (5) ◽  
pp. 152 ◽  
Author(s):  
Daiane Conceição de Sousa ◽  
João Carlos Medeiros ◽  
Julian Junio de Jesus Lacerda ◽  
Jaqueline Dalla Rosa ◽  
Cácio Luiz Boechat ◽  
...  

The use of cover crops is an important strategy for soil management in the Brazilian Cerrado to improve no-tillage (NT) systems. For this, it is necessary know the potential of cover crop species for biomass production, nutrient cycling, and persistence of residues on the soil surface in soils and climatic conditions of this biome. Thus, the experiment was developed to evaluate the agronomic potential of cover crops cultivated on an Oxisol (Latossolo Amarelo) in the Cerrado of Piauí, Brazil. The experiment was conducted from January 2015 to July 2016. The experimental design was in randomized blocks with 11 treatments and four replicates. The treatments consisted of single and intercropped cover species. The evaluations were: dry mass production, nutritional composition of the plants, nutrient accumulation by dry mass produced and decomposition rate of the dry mass produced for each treatment. The higher dry matter production was obtained with Crotalaria juncea, Cajanus cajan (cv. IAC-Fava larga), Pennisetum glaucum and Brachiaria ruziziensis. The lower dry matter production was obtained with Mucuna aterrima, and mix of Crotalaria spectabilis + Pennisetum glaucum. The higher nutrients accumulation in the plants occurred for Cajanus cajan (cv. IAC-Fava larga), Crotalaria juncea and Crotalaria spectabilis. The cover plants studied presented good potential for soil conservation, due to the permanence of residues on the surface, except for Mucuna aterrima and Crotalaria spectabilis.


Sign in / Sign up

Export Citation Format

Share Document