The measurement of the intrinsic oxygen fugacity and the electrical conductivity of peridotites from the earth's mantle at high pressure and temperature

Physica B+C ◽  
1986 ◽  
Vol 139-140 ◽  
pp. 830-833 ◽  
Author(s):  
E. Hinze ◽  
M. Manko ◽  
G. Will
2007 ◽  
Vol 19 (42) ◽  
pp. 425216 ◽  
Author(s):  
Dongmei Zhang ◽  
Chunxiao Gao ◽  
Yanzhang Ma ◽  
Chunyuan He ◽  
Xiaowei Huang ◽  
...  

2021 ◽  
Vol 104 (18) ◽  
Author(s):  
Ryan S. Crum ◽  
David A. Brantley ◽  
Vu Tran ◽  
Minta C. Akin ◽  
Ricky Chau

2020 ◽  
Vol 105 (3) ◽  
pp. 333-343
Author(s):  
Katherine Armstrong ◽  
Nicki C. Siersch ◽  
Tiziana Boffa-Ballaran ◽  
Daniel J. Frost ◽  
Tony Yu ◽  
...  

Abstract Experimental studies and measurements of inclusions in diamonds show that ferric iron components are increasingly stabilized with depth in the mantle. To determine the thermodynamic stability of such components, their concentration needs to be measured at known oxygen fugacities. The metal-oxide pair Ru and RuO2 are ideal as an internal oxygen fugacity buffer in high-pressure experiments. Both phases remain solid to high temperatures and react minimally with silicates, only exchanging oxygen. To calculate oxygen fugacities at high pressure and temperature, however, requires information on the phase relations and equation of state properties of the solid phases. We have made in situ synchrotron X-ray diffraction measurements in a multi-anvil press on mixtures of Ru and RuO2 to 19.4 GPa and 1473 K with which we have determined phase relations of the RuO2 phases and derived thermal equations of state (EoS) parameters for both Ru and RuO2. Rutile-structured RuO2 was found to undergo two phase transformations, first at ~7 GPa to an orthorhombic structure and then above 12 GPa to a cubic structure. The phase boundary of the cubic phase was constrained for the first time at high pressure and temperature. We have derived a continuous Gibbs free energy expression for the tetragonal and orthorhombic phases of RuO2 by fitting the second-order phase transition boundary and P-V-T data for both phases, using a model based on Landau theory. The transition between the orthorhombic and cubic phases was then used along with EoS terms derived for both phases to determine a Gibbs free energy expression for the cubic phase. We have used these data to calculate the oxygen fugacity of the Ru + O2 = RuO2 equilibrium, which we have parameterized as a single polynomial across the stability fields of all three phases of RuO2. The expression is log10fO2(Ru – RuO2) = (7.782 – 0.00996P + 0.001932P2 – 3.76 × 10–5P3) + (–13 763 + 592P – 3.955P2)/T + (–1.05 × 106 – 4622P)/T2, which should be valid from room pressure up to 25 GPa and 773–2500 K, with an estimated uncertainty of 0.2 log units. Our calculated fO2 is shown to be up to 1 log unit lower than estimates that use previous expressions or ignore EoS terms.


Author(s):  
Вадим Викторович Ефремов ◽  
Михаил Николаевич Палатников ◽  
Ольга Борисовна Щербина

Методом импеданс спектроскопии в области температур 290 - 460 К исследован сегнетоэлектрический твердый раствор LiNaTaNbO со структурой перовскита, синтезированный в условиях высокого давления и температуры. Определены значения статических удельных проводимостей, наиболее вероятные времена релаксации в зависимости от температуры, энтальпии активации носителей заряда и реальная часть диэлектрической проницаемости. Обнаружено, что при комнатной температуре LiNaTaNbO обладает высокой электропроводностью, близкой к суперионной. Обсуждаются возможные механизмы обнаруженных явлений. A ferroelectric solid solution LiNaTaNbO with a perovskite structure, synthesized under the high pressure and temperature conditions, has been studied by impedance spectroscopy in the temperature range 290 - 460 K. The values of static conductivity, the most probable relaxation times as functions of temperature, the activation enthalpy of charge carriers, and the real part of the dielectric constant have been determined. It was found that at room temperature LiNaTaNbO has a high electrical conductivity, close to the superionic one. Possible mechanisms of the discovered phenomenon are discussed.


Author(s):  
Egor Koemets ◽  
Timofey Fedotenko ◽  
Saiana Khandarkhaeva ◽  
Maxim Bykov ◽  
Elena Bykova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document