Dynamical aspects of spin chains at infinite temperature for different spin quantum numbers

1993 ◽  
Vol 199 (1) ◽  
pp. 116-136 ◽  
Author(s):  
Markus Böhm ◽  
Hajo Leschke
2007 ◽  
Vol 05 (04) ◽  
pp. 439-455 ◽  
Author(s):  
DAVIDE ROSSINI ◽  
VITTORIO GIOVANNETTI ◽  
ROSARIO FAZIO

We analyze the communication efficiency of quantum information transfer along unmodulated spin chains by computing the communication rates of various protocols. The effects of temporal correlations are discussed, showing that they can be exploited to boost the transmission efficiency.


2003 ◽  
Vol 339 (4) ◽  
pp. 156-163 ◽  
Author(s):  
U Köbler ◽  
J Englich ◽  
O Hupe ◽  
J Hesse

Author(s):  
Marcelo Amaral ◽  
Klee Irwin

Considering the predictions from the standard model of particle physics coupled with experimental results from particle accelerators, we discuss a scenario in which from the infinite possibilities in the Lie groups we use to describe particle physics, nature needs only the lower dimensional representations - an important phenomenology that we argue indicates nature is code theoretic. We show that the quantum deformation of the SU(2) Lie algebra at the fifth root of unity can be used to address the quantum Lorentz group representation theory through its universal covering group and gives the right low dimensional physical realistic spin quantum numbers confirmed by experiments. In this manner we can describe the spacetime symmetry content of relativistic quantum fields in accordance with the well known Wigner classification. Further connections of the fifth root of unity  quantization with the mass quantum number associated with the Poincaré Group and the SU(N) charge quantum numbers are discussed as well as their implication for quantum gravity.


2021 ◽  
Vol 94 (3) ◽  
Author(s):  
Kilian Irländer ◽  
Heinz-Jürgen Schmidt ◽  
Jürgen Schnack

AbstractQuantum tunneling of the magnetization is a phenomenon that impedes the use of small anisotropic spin systems for storage purposes even at the lowest temperatures. Phonons, usually considered for temperature dependent relaxation of magnetization over the anisotropy barrier, also contribute to magnetization tunneling for integer spin quantum numbers. Here we demonstrate that certain spin–phonon Hamiltonians are unexpectedly robust against the opening of a tunneling gap, even for strong spin–phonon coupling. The key to understanding this phenomenon is provided by an underlying supersymmetry that involves both spin and phonon degrees of freedom.


It is shown that the stationary Schrödinger equation describing the distribution of electrons in the vicinity of the atomic nucleus has a solution, in principle, for any dimensionality of the space around the nucleus. As an example, a solution of the Schrödinger equation in a five - dimensional space is obtained. It is shown that the solution of the Schrödinger equation in p - dimensional space has p quantum numbers: the principal quantum number, the orbital quantum number and p - 2 magnetic quantum numbers. Taking into account the spin quantum number, the total number of quantum numbers in p - dimensional space is p + 1. This leads to the possibility of increasing the number of quantum cells of orbitals and, consequently, to the possibility of increasing the valence of the elements.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 285 ◽  
Author(s):  
John Martin ◽  
Stefan Weigert ◽  
Olivier Giraud

Coherent and anticoherent states of spin systems up to spin j=2 are known to be optimal in order to detect rotations by a known angle but unknown rotation axis. These optimal quantum rotosensors are characterized by minimal fidelity, given by the overlap of a state before and after a rotation, averaged over all directions in space. We calculate a closed-form expression for the average fidelity in terms of anticoherent measures, valid for arbitrary values of the quantum number j. We identify optimal rotosensors (i) for arbitrary rotation angles in the case of spin quantum numbers up to j=7/2 and (ii) for small rotation angles in the case of spin quantum numbers up to j=5. The closed-form expression we derive allows us to explain the central role of anticoherence measures in the problem of optimal detection of rotation angles for arbitrary values of j.


Sign in / Sign up

Export Citation Format

Share Document