Gliadin films. I: Preparation and in vitro evaluation as a carrier for controlled drug release

1995 ◽  
Vol 121 (1) ◽  
pp. 117-121 ◽  
Author(s):  
V Stella
2019 ◽  
Vol 565 ◽  
pp. 199-208 ◽  
Author(s):  
Laura Mahlert ◽  
Juliane Anderski ◽  
Timo Schoppa ◽  
Dennis Mulac ◽  
Jingjiang Sun ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoqin Qian ◽  
Wenping Wang ◽  
Wentao Kong ◽  
Yu Chen

A novel anticancer drug delivery system with contrast-enhanced ultrasound-imaging performance was synthesized by a typical hard-templating method using monodispersed silica nanoparticles as the templates, which was based on unique molecularly organic/inorganic hybrid hollow periodic mesoporous organosilicas (HPMOs). The highly dispersed HPMOs show the uniform spherical morphology, large hollow interior, and well-defined mesoporous structures, which are very beneficial for ultrasound-based theranostics. The obtained HPMOs exhibit excellent performances in contrast-enhanced ultrasonography bothin vitroandin vivoand can be used for the real-time determination of the progress of lesion tissues during the chemotherapeutic process. Importantly, hydrophobic paclitaxel- (PTX-) loaded HPMOs combined with ultrasound irradiation show fast ultrasound responsiveness for controlled drug release and higherin vitroandin vivotumor inhibition rates compared with free PTX and PTX-loaded HPMOs, which is due to the enhanced ultrasound-triggered drug release and ultrasound-induced cavitation effect. Therefore, the achieved novel HPMOs-based nanoparticle systems will find broad application potentials in clinically ultrasound-based imaging and auxiliary tumor chemotherapy.


Author(s):  
DHARMENDER PALLERLA ◽  
SUMAN BANOTH ◽  
SUNKARI JYOTHI

Objective: The objective of this study was to formulate and evaluate the Curcumin (CUR) encapsulated sodium alginate (SA)/badam gum (BG)/kaolin (KA) microbeads for controlled drug release studies. Methods: The fabricated microbeads were characterized by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (X-RD), and scanning electron microscopy (SEM). Dynamic swelling studies and in vitro release kinetics were performed in simulated intestinal fluid (pH 7.4) and simulated gastric fluid (pH 1.2) at 37 °C. Results: FTIR confirms the formation of microbeads. DSC studies confirm the polymorphism of CUR in drug loaded microbeads which indicate the molecular level dispersion of the drug in the microbeads. SEM studies confirmed the microbeads are spherical in shape with wrinkled and rough surfaces. XRD studies reveal the molecular dispersion of CUR and the presence of KA in the developed microbeads. In vitro release studies and swelling studies depend on the pH of test media, which might be suitable for intestinal drug delivery. The % of drug release values fit into the Korsmeyer-Peppas equation and n values are obtained in the range of 0.577-0.664, which indicates that the developed microbeads follow the non-Fickian diffusion drug release mechanism. Conclusion: The results concluded that the CUR encapsulated microbeads are potentially good carriers for controlled drug release studies.


Author(s):  
Harish K. Kunjwani ◽  
Dinesh M. Sakarkar

The aim of this work was to formulate a novel multiparticulate system having pH sensitive property and specific enzyme biodegradability for colon specific drug delivery of Prednisolone (PD). Natural polysaccharide, Tamarind gum is used for microsphere preparation and Eudratit S- 100 for coating to provide pH controlled drug release. The formulation aims at minimal degradation and optimum delivery of the drug with relatively higher local concentration, which may provide more effective therapy for inflammatory bowel disease including Crohn disease and ulcerative colitis. Tamarind gum microspheres were prepared by emulsion dehydration technique using polymer in ratio of 1:1 to 1: 9. These microspheres were coated with Eudragit S-100 by oil in oil solvent evaporation method using core: coat ration (5:1). Tamarind gum microspheres and Eudragit coated tamarind gum microspheres were evaluated for surface morphology, particle size and size distribution, percentage drug entrapment, surface accumulation studies, in vitro drug release in simulated gastrointestinal fluids. The effect of various formulation variables were studied the prepared microspheres were spherical in shape in the size range of 64 µm to 113 µm, the encapsulation efficiency was in range of 30-72% depending upon the concentration of gum. The drug release was about 14-20% in first four hours of study gradually rises in 5th hour and 85% drug release occurs in 10-12% hr thus showing desirable drug release in the colonic simulated environment. PD tamarind gum microspheres are thought to have the potential to maintain drug concentration within target ranges for a long time, decreasing the side effects caused by concentration fluctuation, ensuring the efficiency of treatment and improving patient compliance by reducing dosing frequency. The animal study done using acetic acid induced colitis model on rats also suggest the anti inflammatory activity of the formulation.


2019 ◽  
Vol 220 (17) ◽  
pp. 1900188
Author(s):  
Vuk V. Filipović ◽  
Marija M. Babić ◽  
Dejan Gođevac ◽  
Aleksandar Pavić ◽  
Jasmina Nikodinović‐Runić ◽  
...  

2015 ◽  
Vol 482 (1-2) ◽  
pp. 68-74 ◽  
Author(s):  
Katrin Fuchs ◽  
Pierre E. Bize ◽  
Alban Denys ◽  
Gerrit Borchard ◽  
Olivier Jordan

Sign in / Sign up

Export Citation Format

Share Document