drug release kinetics
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 42)

H-INDEX

28
(FIVE YEARS 5)

Author(s):  
Roberto Vittorio Pivato ◽  
Filippo Rossi ◽  
Monica Ferro ◽  
Franca Castiglione ◽  
Francesco Trotta ◽  
...  

2021 ◽  
Vol 20 (4) ◽  
pp. 565-576
Author(s):  
Nour Al Sawaftah ◽  
Vinod Paul ◽  
Nahid Awad ◽  
Ghaleb A. Husseini

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5937
Author(s):  
Muhammad Umar Aslam Khan ◽  
Iqra Iqbal ◽  
Mohamed Nainar Mohamed Ansari ◽  
Saiful Izwan Abd Razak ◽  
Mohsin Ali Raza ◽  
...  

The present research is based on the fabrication preparation of CS/PVA/GG blended hydrogel with nontoxic tetra orthosilicate (TEOS) for sustained paracetamol release. Different TEOS percentages were used because of their nontoxic behavior to study newly designed hydrogels’ crosslinking and physicochemical properties. These hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and wetting to determine the functional, surface morphology, hydrophilic, or hydrophobic properties. The swelling analysis in different media, degradation in PBS, and drug release kinetics were conducted to observe their response against corresponding media. The FTIR analysis confirmed the components added and crosslinking between them, and surface morphology confirmed different surface and wetting behavior due to different crosslinking. In various solvents, including water, buffer, and electrolyte solutions, the swelling behaviour of hydrogel was investigated and observed that TEOS amount caused less hydrogel swelling. In acidic pH, hydrogels swell the most, while they swell the least at pH 7 or higher. These hydrogels are pH-sensitive and appropriate for controlled drug release. These hydrogels demonstrated that, as the ionic concentration was increased, swelling decreased due to decreased osmotic pressure in various electrolyte solutions. The antimicrobial analysis revealed that these hydrogels are highly antibacterial against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The drug release mechanism was 98% in phosphate buffer saline (PBS) media at pH 7.4 in 140 min. To analyze drug release behaviour, the drug release kinetics was assessed against different mathematical models (such as zero and first order, Higuchi, Baker–Lonsdale, Hixson, and Peppas). It was found that hydrogel (CPG2) follows the Peppas model with the highest value of regression (R2 = 0.98509). Hence, from the results, these hydrogels could be a potential biomaterial for wound dressing in biomedical applications.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5344
Author(s):  
Hazim J. Haroosh ◽  
Yu Dong ◽  
Shaimaa Jasim ◽  
Seeram Ramakrishna

Electrospinning is a flexible polymer processing method to produce nanofibres, which can be applied in the biomedical field. The current study aims to develop new electrospun hybrid nanocomposite systems to benefit the sustained release of hydrophilic drugs with hydrophobic polymers. In particular, electrospun hybrid materials consisting of polylactic acid (PLA):poly(ε-caprolactone) (PCL) blends, as well as PLA:PCL/halloysite nanotubes-3-aminopropyltriethoxysilane (HNT-ASP) nanocomposites were developed in order to achieve sustained release of hydrophilic drug tetracycline hydrochloride (TCH) using hydrophobic PLA:PCL nanocomposite membranes as a drug carrier. The impact of interaction between two commonly used drugs, namely TCH and indomethacin (IMC) and PLA:PCL blends on the drug release was examined. The drug release kinetics by fitting the experimental release data with five mathematical models for drug delivery were clearly demonstrated. The average nanofiber diameters were found to be significantly reduced when increasing the TCH concentration due to increasing solution electrical conductivity in contrast to the presence of IMC. The addition of both TCH and IMC drugs to PLA:PCL blends reduced the crystallinity level, glass transition temperature (Tg) and melting temperature (Tm) of PCL within the blends. The decrease in drug release and the impairment elimination for the interaction between polymer blends and drugs was accomplished by mobilising TCH into HNT-ASP for their embedding effect into PLA:PCL nanofibres. The typical characteristic was clearly identified with excellent agreement between our experimental data obtained and Ritger–Peppas model and Zeng model in drug release kinetics. The biodegradation behaviour of nanofibre membranes indicated the effective incorporation of TCH onto HNT-ASP.


Sign in / Sign up

Export Citation Format

Share Document