Fabricating Hybrid Microsphere Substrate Based PLGA-CNT with In Situ Drug Release: Characterization and In Vitro Evaluation

2019 ◽  
Vol 4 (7) ◽  
pp. 2095-2100
Author(s):  
Maryam Jafarbeglou ◽  
Majid Abdouss
2007 ◽  
Vol 25 (6) ◽  
pp. 1347-1354 ◽  
Author(s):  
Heiko Kranz ◽  
Erol Yilmaz ◽  
Gayle A. Brazeau ◽  
Roland Bodmeier

INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (01) ◽  
pp. 25-31
Author(s):  
M Priyanka ◽  
◽  
F. S. Dasankoppa ◽  
H. N Sholapur ◽  
NGN Swamy ◽  
...  

The poor bioavailability and the therapeutic effectiveness exhibited by the anti-depressant venlafaxine hydrochloride on oral administration is overcome by the use of ion-activated gel forming systems that are instilled as drops; these undergo gelation in the nasal cavity. The present study describes the design, characterization and evaluation of mucoadhesive nasal in situ gelling drug delivery of venlafaxine hydrochloride using different polymers like sodium alginate, HPMC and pectin in various concentrations. DSC studies revealed compatibility of the drug and excipients used. The in situ gels were characterized for physicochemical parameters, gelling ability, rheological studies, drug content, drug entrapment efficiency, in vitro mucoadhesive strength, water holding capacity, gel expansion coefficient and in vitro drug release studies. The amount of polymer blends was optimized using 23 full factorial design. The influence of experimental factors on percentage cumulative drug release at the end of 2 and 8 hours were investigated to get optimized formulation. The responses were analyzed using ANOVA and polynomial equation was generated for each response using multiple linear regression analysis. Optimized formulation, F9, containing 1.98% w/V sodium alginate, 0.64% w/V hydroxylpropyl methylcellulose, 0.99% w/V pectin showed percentage cumulative drug release of 19.33 and 80.44 at the end of 2 and 8 hours, respectively, which were close to the predicted values. The optimized formulation was subjected to stability study for three months at 300C /75% RH. The stability study revealed no significant change in pH, drug content and viscosity. Thus, venlafaxine hydrochloride nasal mucoadhesive in situ gel could be successfully formulated to improve bioavailability and to target the brain.


1970 ◽  
Vol 1 (3) ◽  
pp. 43-49 ◽  
Author(s):  
Jovita Kanoujia ◽  
Kanchan Sonker ◽  
Manisha Pandey ◽  
Koshy M Kymonil ◽  
Shubhini A Saraf

The present research work deals with the formulation and evaluation of in-situ gelling system based on sol-to-gel transition for ophthalmic delivery of an antibacterial agent gatifloxacin, to overcome the problems of poor bioavailability and therapeutic response exhibited by conventional formulations based a sol-to-gel transition in the cul-de-sac upon instillation. Carbopol 940 was used as the gelling agent in combination with HPMC and HPMC K15M which acted as a viscosity enhancing agent. The prepared formulations were evaluated for pH, clarity, drug content, gelling capacity, bioadhesive strength and in-vitro drug release. In-vitro drug release data of optimized formulation (F12) was treated according to Zero, First, Korsmeyer Peppas and Higuchi kinetics to access the mechanism of drug release. The clarity, pH, viscosity and drug content of the developed formulations were found in range 6.0-6.8, 10-570cps, 82-98% respectively. The gel provided sustained drug release over an 8 hour period. The developed formulation can be used as an in-situ gelling vehicle to enhance ocular bioavailability and the reduction in the frequency of instillation thereby resulting in better patient compliance. Key Words: In-situ gelation; Gatifloxacin; Carbopol 940; HPMC K15M. DOI: http://dx.doi.org/10.3329/icpj.v1i3.9661 International Current Pharmaceutical Journal 2012, 1(3): 43-49


Author(s):  
Vazir Ashfaq Ahmed ◽  
Divakar Goli

Objective: The goal of this study was to develop and characterize an ion-activated in situ gel-forming brimonidine tartrate, solution eye drops containing xanthan gum as a mucoadhesive polymer.Method: Sol-gel formulation was prepared using gellan gum as an ion-activated gel-forming polymer, xanthan gum as mucoadhesive agent, and hydroxypropyl methyl cellulose (HPMC E50LV) as release retardant polymer. Phenylethyl alcohol is used as preservatives in borate buffer. The 23 factorial design was employed to optimize the formulation considering the concentration of gelrite, xanthan gum and HPMC as independent variables, gelation time, gel strength, and mucoadhesive force (N). Gelation time , gel strength, mucoadhesive force (N), viscosity (cP) and in vitro percentage drug release were chosen as dependent variables. The formulation was characteristics for pH, clarity, isotonicity, sterility, rheological behavior, and in vitro drug release, ocular irritation, and ocular visualization.Result: Based on desirability index of responses, the formulation containing a concentration of gelrite (0.4%), xanthan gum (0.21%), and HPMC (HPMC E50 (0.24%) was found to be the optimized formulation concentration developed by 23 factorial design. The solution eye drops resulted in an in situ phase change to gel-state when mixed with simulated tear fluid. The gel formation was also confirmed by viscoelastic measurements. Drug release from the gel followed non-fickian mechanism with 88% of drug released in 10 h, thus increased the residence time of the drug.Conclusion: An in situ gelling system is a valuable alternative to the conventional system with added benefits of sustained drug release which may ultimately result in improved patient compliance.


2018 ◽  
Vol 10 (5) ◽  
pp. 76
Author(s):  
Methaq Hamad Sabar ◽  
Iman Sabah Jaafar ◽  
Masar Basim Mohsin Mohamed

Objective: The aim of this study was to formulate ketoconazole (keto) as oral floating in situ gel to slow the release of keto in the stomach.Methods: Sodium alginate (Na alginate) was used as a primary polymer in the preparation of the in situ gel and was supported by the following polymers: guar gum (GG), hydroxypropyl methylcellulose (HPMC) K4M, K15M and carbapol 940 as viscosity enhancing agents. As a consequence, and to complete the gelation process of above formulations was by adding the calcium carbonate (CaCO3). The in situ gels were investigated by the following tests: floating lag time, floating duration, viscosity, drug content, in vitro gelling studies and in vitro release study.Results: The study showed that the faster release was obtained with F1 which contained Na alginate alone. Additionally, reduction in Na alginate concentration resulted in significant increase in drug release. It was also noted that the increase in GG (viscosity enhancing polymer) concentration resulted in non-significant decrease in percent drug release and the reduction in CaCO3 concentration led to significant increase in drug release. Moreover, the release of drug was also affected by grade of viscosity enhancing polymer, the faster release was observed with the formula which contained a polymer of low viscosity (HPMC K4M) and an opposite result was with the high viscosity polymer (HPMCK15M).Conclusion: This study showed the formulation of Na alginate with GG and CaCO3, led to gain floating in situ gel and a sustained release of keto. 


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (12) ◽  
pp. 54-58
Author(s):  
P. H Patil ◽  
◽  
V. S Belgamwar ◽  
D. A Patel ◽  
S. J. Surana

The aim of present investigation was formulation and in-vitro evaluation of in situ gel for the nasal delivery of zolmitriptan. The in situ gel was prepared by temperature induced gelation technique using Pluronic with mucoadhesive polymer hydroxy propyl methyl cellulose K4 M in different ratios. The in situ gels so prepared were characterized and from the evaluation studies, batch PH2 was optimized and further subjected for stability studies at 30±2°C and 60±5% RH for 90 days. These formulations retained good stability at accelerated conditions and also did not show any remarkable damage to nasal mucosa in histopathological study. Owing to these properties it can be used as an effective delivery system for the nasal route.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (09) ◽  
pp. 83-85
Author(s):  
A Ambavkar ◽  
◽  
N. Desai

The objective of the study was to develop and evaluate nanolipid carriers based in situ gel of Carbamazepine, for brain delivery through intranasal route. The non – invasive nasal route can provide rapid delivery of drugs directly to the central nervous system by bypassing the blood brain barrier. The nanolipid carriers of carbamazepine as in situ nasal gel can prolong the drug release for control of repetitive seizures and were prepared by Phase Inversion Temperature technique. The retention of the carriers in the nasal cavity was improved by using Poloxamer 407 as thermoresponsive and Carbopol 974P as mucoadhesive gelling polymers, respectively. The developed gel was evaluated for particle size, polydispersity index, zeta potential, morphology, entrapment efficiency, mucoadhesive and thermoresponsive behaviour, in vitro drug release, ex vivo permeation and nasociliotoxicity. The gel showed sustained release over prolonged periods and was found to be non-toxic to the sheep nasal mucosa.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Niu Niu ◽  
Shu-Hua Teng ◽  
Hua-Jian Zhou ◽  
Hai-Sheng Qian

Chitosan-silica (CS-SiO2) hybrid microspheres were prepared through the combined process of sol-gel and emulsification-crosslinking. Their composition, morphology, in vitro bioactivity, and drug release behavior were investigated. The results showed that, when 20 wt% SiO2 was incorporated, the as-prepared CS-SiO2 hybrid microspheres exhibited a regular spherical shape, a high dispersity, and a uniform microstructure. Their average particle diameter was determined to be about 24.0 μm. The in situ deposited inorganic phase of the hybrid microspheres was identified as amorphous SiO2, and its actual content was determined by the TG analysis. As compared with the pure chitosan microspheres, the CS-SiO2 hybrid microspheres displayed a greatly improved in vitro bioactivity. Vancomycin hydrochloride (VH) was selected as a model drug. It was demonstrated that the CS-SiO2 hybrid microspheres presented a good capacity for both loading and sustained release of VH. Moreover, the increase of the SiO2 content efficiently slowed down the drug release rate of the CS-SiO2 hybrid microspheres.


Sign in / Sign up

Export Citation Format

Share Document