Effect of particle size on the available surface area of nifedipine from nifedipine-polyethylene glycol 6000 solid dispersions

1996 ◽  
Vol 127 (2) ◽  
pp. 261-272 ◽  
Author(s):  
C Lin
1984 ◽  
Vol 32 (10) ◽  
pp. 4130-4136 ◽  
Author(s):  
SHIGERU YAKOU ◽  
KUMIKO UMEHARA ◽  
TAKASHI SONOBE ◽  
TSUNEJI NAGAI ◽  
MASAYASU SUGIHARA ◽  
...  

2011 ◽  
Vol 47 (3) ◽  
pp. 513-523 ◽  
Author(s):  
Jagdale Swati Changdeo ◽  
Musale Vinod ◽  
Kuchekar Bhanudas Shankar ◽  
Chabukswar Anuruddha Rajaram

Allopurinol is a commonly used drug in the treatment of chronic gout or hyperuricaemia associated with treatment of diuretic conditions. One of the major problems with the drug is that it is practically insoluble in water, which results in poor bioavailability after oral administration. In the present study, solid dispersions of allopurinol were prepared by solvent evaporation, kneading method, co-precipitation method, co-grinding method and closed melting methods to increase its water solubility. Hydrophilic carriers such as polyvinylpyrrolidone, polyethylene glycol 6000 were used in the ratio of 1:1, 1:2 and 1:4 (drug to carrier ratio). The aqueous solubility of allopurinol was favored by the presence of both polymers. These new formulations were characterized in the liquid state by phase solubility studies and in the solid state by differential scanning calorimetry, powder X-ray diffraction, UV and Fourier Transform Infrared spectroscopy. Solid state characterizations indicated that allopurinol was present as an amorphous material and entrapped in polymer matrix. In contrast to the very slow dissolution rate of pure allopurinol, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. Solid dispersion prepared with polyvinylpyrrolidone showed highest improvement in wettability and dissolution rate of allopurinol. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer-Peppas model and the drug release kinetics primarily as Non-Fickian diffusion. Therefore, the present study showed that polyvinylpyrrolidone and polyethylene glycol 6000 have a significant solubilizing effect on allopurinol.


Sign in / Sign up

Export Citation Format

Share Document