Solar cell minority carrier lifetime using open-circuit voltage decay

Solar Cells ◽  
1984 ◽  
Vol 11 (2) ◽  
pp. 147-161 ◽  
Author(s):  
Martin A. Green
2004 ◽  
Vol 1 (2) ◽  
pp. 321-325
Author(s):  
Baghdad Science Journal

The measurement of minority carrier lifetime (MCLT) ofp-n Si fabricated with aid of laser doping technique was reported. The measurement is achieved by using open circuit voltage decay (OCVD) technique. The experiment data confirms that the value of MCLT and proftle of Voc decay were very sensitive to the doping laser energy.


MRS Bulletin ◽  
2007 ◽  
Vol 32 (3) ◽  
pp. 225-229 ◽  
Author(s):  
Joseph D. Beach ◽  
Brian E. McCandless

AbstractThe record laboratory cell (∼1 cm2 area) efficiency for thin-film cadmium telluride (CdTe) is 16.5%, and that for a copper indium diselenide (CuInSe2) thin-film alloy is 19.5%. Commercially produced CdTe and CuInSe2 modules (0.5–1 m2 area) have efficiencies in the 7–11% range. Research is needed both to increase laboratory cell efficiencies and to bring those small - area efficiencies to large-area production. Increases in laboratory CdTe cell efficiency will require increasing open-circuit voltage, which will allow cells to harvest more energy from each absorbed photon. This will require extending the minority carrier lifetime from its present τ ≤ 2 ns to τ ≥ 10 ns and increasing hole concentration in the CdTe beyond 1015 cm2, which appears to be limited by compensating defects. Increasing laboratory CuInSe2-based cell efficiency significantly beyond 19.5% will also require increasing the open-circuit voltage, either by increasing the bandgap, the doping level, or the minority carrier lifetime. The photovoltaic cells in commercial modules occupy tens of square centimeters, and both models and experiments have shown that low-performing regions in small fractions of a cell can significantly reduce the overall cell per formance. Increases in commercial module efficiency will require control of materials properties across large deposition areas in a high-throughput environment to minimize such non-uniformities. This article discusses approaches used and research needed to increase the ultimate efficiencies of CdTe- and CuInSe2-based devices and translate these gains to commercial photovoltaic modules.


1997 ◽  
Vol 19 (4) ◽  
pp. 225-238
Author(s):  
B. Affour ◽  
P. Mialhe

The Open Circuit Voltage Decay (OCVD) method for the determination of the base minority carrier lifetime (τ) and the back surface recombination velocity (S) of silicon solar cells has been investigated at constant illumination level. The validity of the method has been discussed through a simulation study by considering the mathematical solution of the continuity equation. Extracted values ofτand S are compared to their input values in order to evaluate the performances of our method and the precision with regard to cell structural parameters, namely the base width and the base doping level. Deviations in lifetime values remain lower than 7% for almost all the cell configurations while recombination velocity deviations are shown to be dependent on cell structure parameters and experimental procedure.


2014 ◽  
Vol 3 (7) ◽  
pp. Q137-Q141 ◽  
Author(s):  
Fumio Shibata ◽  
Daisuke Ishibashi ◽  
Shoji Ogawara ◽  
Taketoshi Matsumoto ◽  
Chang-Ho Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document