Effects of season and sex on in vitro aromatase and 17β-oxidoreductase activities in the brain and anterior pituitary gland of gonadectomized sheep

1986 ◽  
Vol 3 (4) ◽  
pp. 227-236
Author(s):  
J.D. Glass ◽  
R.P. Amann ◽  
T.M. Nett
1984 ◽  
Vol 100 (2) ◽  
pp. 219-226 ◽  
Author(s):  
S. A. Nicholson ◽  
T. E. Adrian ◽  
B. Gillham ◽  
M. T. Jones ◽  
S. R. Bloom

ABSTRACT The effect of six hypothalamic peptides on the basal release of ACTH and that induced by arginine vasopressin (AVP) or by ovine corticotrophin releasing factor (oCRF) from fragments of the rat anterior pituitary gland incubated in vitro was investigated. Dose–response curves to AVP and to oCRF were obtained, and the response to a low dose of oCRF was potentiated by a low dose of AVP. Basal release of ACTH was not affected by any of the peptides in concentrations in the range 10−12 to 10−6 mol/l, and only substance P (SP) and somatostatin (SRIF) inhibited significantly the response to oCRF in a dose-related manner. The responses to a range of doses of oCRF or AVP were reduced by 10−8 and 10 − 6 mol SP or SRIF/1, and to a greater extent by the higher dose. Except in the case of 10−6 mol SRIF/1 on the response to AVP, the response was not further diminished by preincubation of the tissue with the peptide before the stimulating agent was added. The inhibition of the responses to AVP or oCRF by 10−9 mol SP/1 was not potentiated by its combination with either 5 × 10−10 or 10−8 mol SRIF/1; the inhibitory effects were merely additive. The results suggest that although SRIF and SP are able to modulate the release of ACTH from the anterior pituitary gland, they do so only at a high concentration. In the case of SRIF these concentrations are several orders of magnitude higher than those reported to be present in the hypophysial portal blood and therefore a physiological role for this peptide in the control of ACTH secretion is unlikely. J. Endocr. (1984) 100, 219–226


1975 ◽  
Vol 67 (2) ◽  
pp. 469-476 ◽  
Author(s):  
WH Fletcher ◽  
NC Anderson ◽  
JW Everett

The concept of "stimulus-secretion coupling" suggested by Douglas and co-workers to explain the events related to monamine discharge by the adrenal medulla (5, 7) may be applied to other endocrine tissues, such as adrenal cortex (36), pancreatic islets (4), and magnocellular hypothalamic neurons (6), which exhibit a similar ion-dependent process of hormone elaboration. In addition, they share another feature, that of joining neighbor cells via membrane junctions (12, 26, and Fletcher, unpublished observation). Given this, and the reports that hormone secretion by the pars distalis also involves a secretagogue-induced decrease in membrane bioelectric potential accompanied by a rise in cellular [Ca++] (27, 34, 41), it was appropriate to test the possibility that cells of the anterior pituitary gland are united by junctions.


2016 ◽  
Vol 35 (4) ◽  
pp. 463-475 ◽  
Author(s):  
Sonia A. Ronchetti ◽  
María S. Bianchi ◽  
Beatriz H. Duvilanski ◽  
Jimena P. Cabilla

Inorganic arsenic (iAs) is at the top of toxic metalloids. Inorganic arsenic-contaminated water consumption is one of the greatest environmental health threats worldwide. Human iAs exposure has been associated with cancers of several organs, neurological disorders, and reproductive problems. Nevertheless, there are no reports describing how iAs affects the anterior pituitary gland. The aim of this study was to investigate the mechanisms involved in iAs-mediated anterior pituitary toxicity both in vivo and in vitro. We showed that iAs administration (from 5 to 100 ppm) to male rats through drinking water increased messenger RNA expression of several oxidative stress-responsive genes in the anterior pituitary gland. Serum prolactin levels diminished, whereas luteinizing hormone (LH) levels were only affected at the higher dose tested. In anterior pituitary cells in culture, 25 µmol/L iAs significantly decreased prolactin release in a time-dependent fashion, whereas LH levels remained unaltered. Cell viability was significantly reduced mainly by apoptosis evidenced by morphological and phosphatidylserine externalization studies. This process is characterized by early depolarization of mitochondrial membrane potential and increased levels of reactive oxygen species. Expression of some key oxidative stress-responsive genes, such as heme oxygenase-1 and metallothionein-1, was also stimulated by iAs exposure. The antioxidant N-acetyl cysteine prevented iAs-induced effects on the expression of oxidative stress markers, prolactin release, and apoptosis. In summary, the present work demonstrates for the first time that iAs reduces prolactin release both in vivo and in vitro and induces apoptosis in anterior pituitary cells, possibly resulting from imbalanced cellular redox status.


1958 ◽  
Vol 193 (3) ◽  
pp. 476-478 ◽  
Author(s):  
H. T. Narahara ◽  
R. H. Williams

When insulin-I131 was incubated at 37°C and pH 7.5 with an extract of beef anterior pituitary, the radioactive material was rendered more soluble in trichloroacetic acid (TCA). Electrophoretic analysis of the TCA-soluble reaction product revealed that it was not free iodide. The concept that pituitary extract might contain a system capable of attacking the insulin molecule was strengthened by the observation that the addition of nonlabeled insulin to the incubation mixture decreased the rate of degradation of insulin-I131. The degradative system of beef anterior pituitary extract was found to be nondialyzable and heat-labile. The degradation of insulin by pituitary extracts may help to explain the observation of other workers that such extracts can inactivate insulin in vitro.


1975 ◽  
Vol 53 (4) ◽  
pp. 455-460 ◽  
Author(s):  
Pierre Borgeat ◽  
Fernand Labrie ◽  
Pierre Garneau

Prostaglandins (PGs) were found to lead to a marked stimulation of cyclic AMP accumulation in rat anterior pituitary gland in vitro in the following decreasing order of potency: [Formula: see text]. The effect of PGs is potentiated by theophylline. The stimulatory effect of PGs on cyclic AMP accumulation is already detected 2 min after the addition of 1 × 10−7 to 1 × 10−6 M PG E2 and its maximal effect is reached after approximately 30 min of incubation, with a progressive decrease toward basal cyclic AMP levels at later time intervals. Increased intracellular cyclic AMP concentrations are accompanied by an increased release of the nucleotide into the incubation medium. Complete removal of Ca2+ from the incubation medium by addition of EGTA was found to increase the stimulatory effect of PG E2 on cyclic AMP accumulation. The action of PGs on hormonal release and cyclic AMP accumulation support the hypothesis of a role of PGs in the mechanism of anterior pituitary hormone (particularly growth hormone) release.


Sign in / Sign up

Export Citation Format

Share Document