scholarly journals In Vivo and In Vitro Arsenic Exposition Induces Oxidative Stress in Anterior Pituitary Gland

2016 ◽  
Vol 35 (4) ◽  
pp. 463-475 ◽  
Author(s):  
Sonia A. Ronchetti ◽  
María S. Bianchi ◽  
Beatriz H. Duvilanski ◽  
Jimena P. Cabilla

Inorganic arsenic (iAs) is at the top of toxic metalloids. Inorganic arsenic-contaminated water consumption is one of the greatest environmental health threats worldwide. Human iAs exposure has been associated with cancers of several organs, neurological disorders, and reproductive problems. Nevertheless, there are no reports describing how iAs affects the anterior pituitary gland. The aim of this study was to investigate the mechanisms involved in iAs-mediated anterior pituitary toxicity both in vivo and in vitro. We showed that iAs administration (from 5 to 100 ppm) to male rats through drinking water increased messenger RNA expression of several oxidative stress-responsive genes in the anterior pituitary gland. Serum prolactin levels diminished, whereas luteinizing hormone (LH) levels were only affected at the higher dose tested. In anterior pituitary cells in culture, 25 µmol/L iAs significantly decreased prolactin release in a time-dependent fashion, whereas LH levels remained unaltered. Cell viability was significantly reduced mainly by apoptosis evidenced by morphological and phosphatidylserine externalization studies. This process is characterized by early depolarization of mitochondrial membrane potential and increased levels of reactive oxygen species. Expression of some key oxidative stress-responsive genes, such as heme oxygenase-1 and metallothionein-1, was also stimulated by iAs exposure. The antioxidant N-acetyl cysteine prevented iAs-induced effects on the expression of oxidative stress markers, prolactin release, and apoptosis. In summary, the present work demonstrates for the first time that iAs reduces prolactin release both in vivo and in vitro and induces apoptosis in anterior pituitary cells, possibly resulting from imbalanced cellular redox status.

1975 ◽  
Vol 67 (2) ◽  
pp. 469-476 ◽  
Author(s):  
WH Fletcher ◽  
NC Anderson ◽  
JW Everett

The concept of "stimulus-secretion coupling" suggested by Douglas and co-workers to explain the events related to monamine discharge by the adrenal medulla (5, 7) may be applied to other endocrine tissues, such as adrenal cortex (36), pancreatic islets (4), and magnocellular hypothalamic neurons (6), which exhibit a similar ion-dependent process of hormone elaboration. In addition, they share another feature, that of joining neighbor cells via membrane junctions (12, 26, and Fletcher, unpublished observation). Given this, and the reports that hormone secretion by the pars distalis also involves a secretagogue-induced decrease in membrane bioelectric potential accompanied by a rise in cellular [Ca++] (27, 34, 41), it was appropriate to test the possibility that cells of the anterior pituitary gland are united by junctions.


Endocrinology ◽  
2007 ◽  
Vol 148 (4) ◽  
pp. 1736-1744 ◽  
Author(s):  
Amy M. Navratil ◽  
J. Gabriel Knoll ◽  
Jennifer D. Whitesell ◽  
Stuart A. Tobet ◽  
Colin M. Clay

The secretion of LH is cued by the hypothalamic neuropeptide, GnRH. After delivery to the anterior pituitary gland via the hypothalamic-pituitary portal vasculature, GnRH binds to specific high-affinity receptors on the surface of gonadotrope cells and stimulates synthesis and secretion of the gonadotropins, FSH, and LH. In the current study, GnRH caused acute and dramatic changes in cellular morphology in the gonadotrope-derived αT3-1 cell line, which appeared to be mediated by engagement of the actin cytoskeleton; disruption of actin with jasplakinolide abrogated cell movement and GnRH-induced activation of ERK. In live murine pituitary slices infected with an adenovirus-containing Rous sarcoma virus-green fluorescent protein, selected cells responded to GnRH by altering their cellular movements characterized by both formation and extension of cell processes and, surprisingly, spatial repositioning. Consistent with the latter observation, GnRH stimulation increased the migration of dissociated pituitary cells in transwell chambers. Our data using live pituitary slices are a striking example of neuropeptide-evoked movements of cells outside the central nervous system and in a mature peripheral endocrine organ. These findings call for a fundamental change in the current dogma of simple passive diffusion of LH from gonadotropes to capillaries in the pituitary gland.


Endocrinology ◽  
2006 ◽  
Vol 147 (2) ◽  
pp. 859-864 ◽  
Author(s):  
Meghan M. Taylor ◽  
Sara L. Bagley ◽  
Willis K. Samson

Intermedin (IMD), a novel member of the adrenomedullin (AM), calcitonin gene-related peptide (CGRP), amylin (AMY) peptide family, has been reported to act promiscuously at all the known receptors for these peptides. Like AM and CGRP, IMD acts in the circulation to decrease blood pressure and in the brain to inhibit food intake, effects that could be explained by activation of the known CGRP, AM, or AMY receptors. Because AM, CGRP, and AMY have been reported to affect hormone secretion from the anterior pituitary gland, we examined the effects of IMD on GH, ACTH, and prolactin secretion from dispersed anterior pituitary cells harvested from adult male rats. IMD, in log molar concentrations ranging from 1.0 pm to 100 nm, failed to significantly alter basal release of the three hormones. Similarly, IMD failed to significantly alter CRH-stimulated ACTH or TRH-stimulated prolactin secretion in vitro. However, IMD concentration-dependently inhibited GHRH-stimulated GH release from these cell cultures. The effects of IMD, although requiring higher concentrations, were as efficacious as those of somatostatin and, like somatostatin, may be mediated, at least in part, by decreasing cAMP accumulation. These actions of IMD were not shared by other members of the AM-CGRP-AMY family of peptides, suggesting the presence of a novel, unique IMD receptor in the anterior pituitary gland and a potential neuroendocrine action of IMD to interact with the hypothalamic mechanisms controlling growth and metabolism.


1979 ◽  
Vol 80 (1) ◽  
pp. 141-152 ◽  
Author(s):  
A. D. SWIFT ◽  
D. B. CRIGHTON

The abilities of three nonapeptide analogues of synthetic luteinizing hormone releasing hormone (LH-RH) to release luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in anoestrous and cyclic ewes were examined, as were their elimination from the plasma in vivo and degradation by extracts of the hypothalamus, anterior pituitary gland, lung, kidney, liver and plasma in vitro. In all cases, comparisons were made with synthetic LH-RH. When injected i.v. into mature ewes as a single dose, the potencies of the analogues were graded and Des Gly-NH210 LH-RH ethylamide was found to be the least potent. It was not possible to demonstrate any significant increase in the potency of this analogue over LH-RH, although a trend was apparent with each parameter examined. [d-Ser(But)6] Des Gly-NH210 LH-RH ethylamide had the greatest potency. There were no differences between the responses of anoestrous ewes and those of ewes treated on day 10 of the oestrous cycle. None of the analogues had a rate of elimination from the plasma different from that of LH-RH during either the first or the second components of the biphasic disappearance curve. The incubation of LH-RH with tissue extracts showed that extracts of the hypothalamus and anterior pituitary gland degraded LH-RH to a similar extent. Both the hypothalamic and anterior pituitary gland extracts degraded more LH-RH than did lung extract, which in turn destroyed more LH-RH than did extracts of kidney or liver tissue. The degradative abilities of kidney and liver extracts did not differ from each other. Plasma failed to degrade LH-RH or the analogues. Although LH-RH was rapidly destroyed by hypothalamic extract in vitro, of the analogues, only Des Gly-NH210 LH-RH ethylamide was degraded. The anterior pituitary gland and kidney extracts failed to degrade [d-Ser6] Des Gly-NH210 LH-RH ethylamide and [d-Ser(But)6] Des Gly-NH210 LH-RH ethylamide as rapidly as LH-RH. Extracts of liver and lung were incapable of catabolizing any of the analogues. There was an inverse correlation between the LH- and FSH-releasing potency of an analogue and its rate of degradation by anterior pituitary gland extract. The slower rates of catabolism of certain analogues of LH-RH by the anterior pituitary gland may explain their increased LH- and FSH-releasing potency.


1984 ◽  
Vol 102 (1) ◽  
pp. 33-42 ◽  
Author(s):  
S. N. Mahmoud ◽  
S. Scaccianoce ◽  
P. R. Scraggs ◽  
S. A. Nicholson ◽  
B. Gillham ◽  
...  

ABSTRACT The occurrence and nature of corticosteroid inhibition of ACTH secretion at the rat anterior pituitary gland was investigated using three experimental models: animals bearing lesions of the basal hypothalamus, and two preparations of the gland incubated in vitro; these were tissue segments and collagenase-dispersed cells. Release of ACTH in the experiments was provoked using one of three distinct stimuli: acid extracts of whole hypothalami, corticotrophin releasing activity released by serotonin from hypothalami incubated in vitro and synthetic ovine corticotrophin releasing factor. Irrespective of whether ACTH was measured directly by radioimmunoassay (in the experiments in vitro) or indirectly in terms of corticosterone production (in the lesioned animals), its stimulated release from the anterior pituitary gland was inhibited by corticosterone. Two phases of inhibition were observed; these had some of the characteristics inferred previously from experiments with intact animals and designated fast feedback and delayed feedback. However, the fast feedback demonstrable in lesioned animals did not show the rate-sensitivity shown previously in intact animals. 11-Deoxycortisol (or 11-deoxycorticosterone) and prednisolone proved to be agonists of corticosterone in provoking fast feed-back in lesioned animals, whereas they had been shown respectively to act as an antagonist or to have no effect in intact rats. Several steroids were able to cause delayed feedback in lesioned rats, but beclomethasone dipropionate (shown to be an agonist of corticosterone in intact rats) proved to have no inhibitory effect at the anterior pituitary gland of lesioned animals. It is concluded that the dynamics of corticosteroid feedback mechanisms at the anterior pituitary gland, as indicated by experiments in lesioned animals, differ from those operative in the intact animals. Other work suggests that a more important site for such inhibitory mechanisms in vivo is the hypothalamus. J. Endocr. (1984) 102, 33–42


1981 ◽  
Vol 90 (3) ◽  
pp. 345-354 ◽  
Author(s):  
KATHLEEN A. ELIAS ◽  
C. A. BLAKE

Changes at the anterior pituitary and/or hypothalamic levels which result in selective FSH release during late pro-oestrus in the cyclic rat were investigated. The possible involvement of decreasing serum concentrations of oestrogen during pro-oestrus in such changes was studied. Rats were decapitated at 12.00 h on pro-oestrus, before the onset of the LH surge and first phase of FSH release, or at 24.00 h on pro-oestrus, shortly after the onset of the second or selective phase of FSH release. Other rats were given oestrogen (OE2) at 14.00 h and killed at 24.00 h pro-oestrus. Paired hemi-anterior pituitary glands were incubated with vehicle or OE2 with or without synthetic LH-releasing hormone (LH-RH) or hypothalamic acid extracts prepared from rats killed at 12.00 or 24.00 h on pro-oestrus. At 24.00 h pro-oestrus, serum FSH concentration was high while serum LH concentration was low regardless of whether rats were given OE2. Glands collected and incubated at 24.00 h released more FSH and less LH than did glands collected and incubated at 12.00 h pro-oestrus. Administration of OE2 in vivo and/or in vitro did not affect these responses. The increments in LH and FSH release attributed to LH-RH or hypothalamic extracts in the glands incubated at 24.00 h were not different from those of the glands incubated at 12.00 h. Also, the hypothalamic extracts prepared from rats killed at 24.00 h were no more effective than the extracts prepared from rats killed at 12.00 h in releasing LH or FSH from glands incubated at 12.00 or 24.00 h pro-oestrus. Administration of OE2 in vivo caused a small suppression of LH-RH-induced FSH release. We suggest that a change occurs at the level of the anterior pituitary gland during the period of the LH surge and first phase of FSH release to increase basal FSH secretion selectively and cause, at least in part, the second phase of increased serum FSH. This change is not mediated by a decrease in serum oestrogen concentration. We failed to observe any evidence that LH-RH causes preferential FSH release during late pro-oestrus or that a hypothalamic peptide with a preferential FSH releasing ability is involved in FSH release at this time.


1995 ◽  
Vol 146 (2) ◽  
pp. 293-300 ◽  
Author(s):  
J M M Rondeel ◽  
W Klootwijk ◽  
E Linkels ◽  
P H M Jeucken, W ◽  
L J Hofland ◽  
...  

Abstract Recent evidence shows that thyrotrophin-releasing hormone (TRH) immunoreactivity in the rat anterior pituitary gland is accounted for by the TRH-like tripeptide prolineamide-glutamyl-prolineamide (pGlu-Glu-ProNH2, <EEP-NH2). The present study was undertaken to investigate further the regulation, localization and possible intrapituitary function of <EEP-NH2. Anterior pituitary levels of <EEP-NH2 were determined between days 5 and 35 of life, during the oestrous cycle and after treatment with the luteinizing hormone-releasing hormone (LHRH) antagonist Org 30276. Treatment of adult males with the LHRH antagonist either for 1 day (500 μg/100 g body weight) or for 5 days (50 μg/100 g body weight) reduced anterior pituitary <EEP-NH2 levels by 25–30% (P<0·05 versus saline-treated controls). Anterior pituitary <EEP-NH2 increased between days 5 and 35 of life. In females, these levels were 2- to 3-fold higher (P<0·05) than in males between days 15 and 25 after birth; these changes corresponded with the higher plasma follicle-stimulating hormone (FSH) levels in the female rats. After day 25, <EEP-NH2 levels in female rats decreased in parallel with a decrease in plasma FSH. Injections with the LHRH antagonist (500 μg/100 g body weight), starting on day 22 of life, led to reduced contents of <EEP-NH2 in the anterior pituitary gland of female rats on days 26 and 30 (55 and 35% decrease respectively). Levels of <EEP-NH2 in the anterior pituitary gland did not change significantly during the oestrous cycle. Fractionation of anterior pituitary cells by unit gravity sedimentation was found to be compatible with the localization of <EEP-NH2 in gonadotrophs. In vitro, <EEP-NH2 dose-dependently inhibited TRH-stimulated growth hormone (GH) release from anterior pituitary cells obtained from neonatal rats, but no consistent effects were seen on the in vitro release of luteinizing hormone (LH), FSH, prolactin (PRL) or thyroid-stimulating hormone (TSH) under basal or TRH/LHRH-stimulated conditions. Furthermore, <EEP-NH2 did not affect the in vitro hormone release by anterior pituitary cells obtained from adult rats. In vivo, <EEP-NH2 (0·3–1·0 μg intravenously) did not affect plasma PRL, TSH, LH, FSH and GH in adult male rats. We conclude that <EEP-NH2 in the anterior pituitary gland is regulated by LHRH, is probably localized in gonadotrophs and may play a (paracrine) role in neonatal GH release. Journal of Endocrinology (1995) 146, 293–300


1983 ◽  
Vol 97 (1) ◽  
pp. 105-111 ◽  
Author(s):  
K. I. J. Shennan ◽  
M. C. Sheppard

Neurotensin is a hypothalamic peptide which inhibits secretion of TSH in the rat in vivo. We have demonstrated a calcium-dependent release of neurotensin from incubated rat hypothalamus in response to depolarizing stimuli, as well as a dose-dependent stimulatory effect of tri-iodothyronine (T3) on neurotensin secretion. We suggest that part of the neuroendocrine control of TSH secretion involves the interaction of T3, neurotensin and TSH; the presence of neurotensin in extracts of anterior pituitary gland is further evidence for its hypophysiotrophic role.


Sign in / Sign up

Export Citation Format

Share Document