Periodic magnetic modulation of a two-dimensional electron gas: Transport properties

1990 ◽  
Vol 7 (4) ◽  
pp. 393-395 ◽  
Author(s):  
P. Vasilopoulos ◽  
F.M. Peeters
1999 ◽  
Vol 595 ◽  
Author(s):  
Narihiko Maeda ◽  
Tadashi Saitoh ◽  
Kotaro Tsubaki ◽  
Toshio Nishida ◽  
Naoki Kobayashi

Two-dimensional electron gas transport properties have been investigated in nitride double-heterostructures. A striking effect has been observed that the two-dimensional electron gas mobility has been drastically enhanced in the AlGaN/GaN/AlGaN doubleheterostructure, compared with that in the conventional AlGaN/GaN singleheterostructure. The observed mobility enhancement has been shown to be mainly due to the enhanced polarization-induced electron confinement in the double-heterostructure, and additionally due to the improvement of the interface roughness in the structure. Device operation of an AlGaN/GaN/AlGaN double-heterostructure field effect transistor has been demonstrated: a maximum transconductance of 180 mS/mm has been obtained for a 0.4 mm-gate-length device. In the double-heterostructure using InGaN channel, the increased capacity for the two-dimensional electron gas has been observed. The AlGaN/(In)GaN/AlGaN double-heterostructures are effective for improving the electron transport properties.


2000 ◽  
Vol 5 (S1) ◽  
pp. 362-368
Author(s):  
Narihiko Maeda ◽  
Tadashi Saitoh ◽  
Kotaro Tsubaki ◽  
Toshio Nishida ◽  
Naoki Kobayashi

Two-dimensional electron gas transport properties have been investigated in nitride double-heterostructures. A striking effect has been observed that the two-dimensional electron gas mobility has been drastically enhanced in the AlGaN/GaN/AlGaN double-heterostructure, compared with that in the conventional AlGaN/GaN single-heterostructure. The observed mobility enhancement has been shown to be mainly due to the enhanced polarization-induced electron confinement in the double-heterostructure, and additionally due to the improvement of the interface roughness in the structure. Device operation of an AlGaN/GaN/AlGaN double-heterostructure field effect transistor has been demonstrated: a maximum transconductance of 180 mS/mm has been obtained for a 0.4 μm-gate-length device. In the double-heterostructure using InGaN channel, the increased capacity for the two-dimensional electron gas has been observed. The AlGaN/(In)GaN/AlGaN double-heterostructures are effective for improving the electron transport properties.


1985 ◽  
Vol 28 (8) ◽  
pp. 733-740 ◽  
Author(s):  
Chu-Hao ◽  
J. Zimmermann ◽  
M. Charef ◽  
R. Fauquembergue ◽  
E. Constant

Sign in / Sign up

Export Citation Format

Share Document