Simultaneous effects of free-stream trubulence intensity and integral length scale on mass transfer about cylinder

1994 ◽  
Vol 9 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Joon Sik Lee ◽  
Dong Kee Sohn ◽  
Tae Hwan Lee
1999 ◽  
Vol 121 (2) ◽  
pp. 217-224 ◽  
Author(s):  
H. P. Wang ◽  
R. J. Goldstein ◽  
S. J. Olson

The naphthalene sublimation technique is used to investigate the influence of high free-stream turbulence with large length scale on the heat/mass transfer from a turbine blade in a highly accelerated linear cascade. The experiments are conducted at four exit Reynolds numbers, ranging from 2.4 × 105 to 7.8 × 105, with free-stream turbulence of 3, 8.5, and 8 percent and corresponding integral length scales of 0.9 cm, 2.6 cm, and 8 cm, respectively. On the suction surface, the heat/mass transfer rate is significantly enhanced by high free-stream turbulence due to an early boundary layer transition. By contrast, the transition occurs very late, and may not occur at very low Reynolds numbers with low free-stream turbulence. In the turbulent boundary layer, lower heat/mass transfer rates are found for the highest free-stream turbulence level with large length scale than for the moderate turbulence levels with relatively small scales. Similar phenomena also occur at the leading edge. However, the effect of turbulence is not as pronounced in the laminar boundary layer.


2003 ◽  
Vol 125 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Christian Saumweber ◽  
Achmed Schulz ◽  
Sigmar Wittig

A comprehensive set of generic experiments has been conducted to investigate the effect of elevated free-stream turbulence on film cooling performance of shaped holes. A row of three cylindrical holes as a reference case, and two rows of holes with expanded exits, a fanshaped (expanded in lateral direction), and a laidback fanshaped hole (expanded in lateral and streamwise direction) have been employed. With an external (hot gas) Mach number of Mam=0.3 operating conditions are varied in terms of free-stream turbulence intensity (up to 11%), integral length scale at constant turbulence intensity (up to 3.5 hole inlet diameters), and blowing ratio. The temperature ratio is fixed at 0.59 leading to an enginelike density ratio of 1.7. The results indicate that shaped and cylindrical holes exhibit very different reactions to elevated free-stream turbulence levels. For cylindrical holes film cooling effectiveness is reduced with increased turbulence level at low blowing ratios whereas a small gain in effectiveness can be observed at high blowing ratios. For shaped holes, increased turbulence intensity is detrimental even for the largest blowing ratio M=2.5. In comparison to the impact of turbulence intensity the effect of varying the integral length scale is found to be of minor importance. Finally, the effect of elevated free-stream turbulence in terms of heat transfer coefficients was found to be much more pronounced for the shaped holes.


Author(s):  
Christian Saumweber ◽  
Achmed Schulz ◽  
Sigmar Wittig

A comprehensive set of generic experiments has been conducted to investigate the effect of elevated free-stream turbulence on film cooling performance of shaped holes. A row of three cylindrical holes as a reference case, and two rows of holes with expanded exits, a fanshaped (expanded in lateral direction), and a laidback fanshaped hole (expanded in lateral and streamwise direction) have been employed. With an external (hot gas) Mach number of Mam = 0.3 operating conditions are varied in terms of free-stream turbulence intensity (up to 11%), integral length scale at constant turbulence intensity (up to 3.5 hole inlet diameters), and blowing ratio. The temperature ratio is fixed at 0.59 leading to an engine-like density ratio of 1.7. The results indicate that shaped and cylindrical holes exhibit very different reactions to elevated free-stream turbulence levels. For cylindrical holes film cooling effectiveness is reduced with increased turbulence level at low blowing ratios whereas a small gain in effectiveness can be observed at high blowing ratios. For shaped holes, increased turbulence intensity is detrimental even for the largest blowing ratio (M = 2.5). In comparison to the impact of turbulence intensity the effect of varying the integral length scale is found to be of minor importance. Finally the effect of elevated free-stream turbulence in terms of heat transfer coefficients was found to be much more pronounced for the shaped holes.


2015 ◽  
Vol 772 ◽  
pp. 361-385 ◽  
Author(s):  
Anikesh Pal ◽  
Sutanu Sarkar

Direct numerical simulations are performed to study the evolution of a towed stratified wake subject to external turbulence in the background. A field of isotropic turbulence is combined with an initial turbulent wake field and the combined wake is simulated in a temporally evolving framework similar to that of Rind & Castro (J. Fluid Mech., vol. 710, 2012a, p. 482). Simulations are performed for external turbulence whose initial level varies between zero and a moderate intensity of up to 7 % relative to the free stream and whose initial integral length scale is of the same order as that of the wake turbulence. A series of simulations are carried out at a Reynolds number of 10 000 and Froude number of 3. Background turbulence, especially at a level of 3 % or above, is found to have substantial quantitative effects in the stratified simulations. Turbulence inside the wake increases due to the entrainment of external turbulence, and the energy transfer through turbulent production from mean to fluctuating velocity also increases, leading to reduced mean velocity. The profiles of normalized mean and turbulence quantities in the stratified wake exhibit little change in the vertical direction but the horizontal spread increases in comparison to the case with undisturbed background. The spatial organization of the internal wave field is disrupted even at the 1 % level of external turbulence. However, key characteristics of stratified wakes such as the formation of coherent pancake vortices and the long lifetime of the mean wake are robust to the presence of fluctuations in the background. A corresponding series of simulations for the unstratified situation is carried out at the same Reynolds number of 10 000 and with similar levels of external turbulence. The change of mean and turbulence statistics is found to be weaker in the unstratified cases compared with the corresponding stratified cases and also weaker relative to that found by Rind & Castro (J. Fluid Mech., vol. 710, 2012a, p. 482) at a similar level of external turbulence relative to the free stream and similar integral length scale. Theoretical arguments and additional simulations are provided to show that the level of external turbulence relative to wake turbulence (dissimilar between the present investigation and Rind & Castro (J. Fluid Mech., vol. 710, 2012a, p. 482)) is a key governing parameter in both stratified and unstratified backgrounds.


1997 ◽  
Vol 3 (2) ◽  
pp. 117-132 ◽  
Author(s):  
G. James Van Fossen ◽  
Chan Y. Ching

The purpose of the present work was twofold: first, to determine if a length scale existed that would cause the greatest augmentation in stagnation region heat transfer for a given turbulence intensity and second, to develop a prediction tool for stagnation heat transfer in the presence of free stream turbulence. Toward this end, a model with a circular leading edge was fabricated with heat transfer gages in the stagnation region. The model was qualified in a low turbulence wind tunnel by comparing measurements with Frossling's solution for stagnation region heat transfer in a laminar free stream. Five turbulence generating grids were fabricated; four were square mesh, biplane grids made from square bars. Each had identical mesh to bar width ratio but different bar widths. The fifth grid was an array of fine parallel wires that were perpendicular to the axis of the cylindrical leading edge. Turbulence intensity and integral length scale were measured as a function of distance from the grids. Stagnation region heat transfer was measured at various distances downstream of each grid. Data were taken at cylinder Reynolds numbers ranging from 42,000 to 193,000. Turbulence intensities were in the range 1.1 to 15.9 percent while the ratio of integral length scale to cylinder diameter ranged from 0.05 to 0.30. Stagnation region heat transfer augmentation increased with decreasing length scale. An optimum scale was not found. A correlation was developed that fit heat transfer data for the square bar grids to within ±4%. The data from the array of wires were not predicted by the correlation; augmentation was higher for this case indicating that the degree of isotropy in the turbulent flow field has a large effect on stagnation heat transfer. The data of other researchers are also compared with the correlation.


Sign in / Sign up

Export Citation Format

Share Document