large length scale
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Joshua McCraney ◽  
Mark Weislogel ◽  
Paul Steen

AbstractIn this work, we analyze liquid drains from containers in effective zero-g conditions aboard the International Space Station (ISS). The efficient draining of capillary fluids from conduits, containers, and media is critical in particular to high-value liquid samples such as minuscule biofluidics processing on earth and enormous cryogenic fuels management aboard spacecraft. The amount and rate of liquid drained can be of key concern. In the absence of strong gravitational effects, system geometry, and liquid wetting dominate capillary fluidic behavior. During the years 2010–2015, NASA conducted a series of handheld experiments aboard the ISS to observe “large” length scale capillary fluidic phenomena in a variety of irregular containers with interior corners. In this work, we focus on particular single exit port draining flows from such containers and digitize hours of archived NASA video records to quantify transient interface profiles and volumetric flow rates. These data are immediately useful for theoretical and numerical model benchmarks. We demonstrate this by making comparisons to lubrication models for slender flows in simplified geometries which show variable agreement with the data, in part validating certain geometry-dependent dynamical interface curvature boundary conditions while invalidating others. We further compare the data for the draining of complex vane networks and identify the limits of the current theory. All analyzed data is made available to the public as MATLAB files, as detailed within.


Author(s):  
Dongsheng Li

Abstract A new tool, macrotexture map, was developed to represent and visualize texture heterogeneity in polycrystalline aggregate. This is a critical tool for microstructure representation, useful in risk analysis, performance simulation, and hotspot identification. In contrast to orientation imaging microscope (OIM) map where each color represents a crystal orientation, each color in this macrotexture map represents a texture. Different color represent different texture and similar texture shall have similar color. Macrotexture map provide a unique function to quantitatively evaluate texture heterogeneity of large components, leading to a first-hand understanding of property heterogeneity and anisotropy. For an experienced user, these maps serve the same purpose in identifying high risk locations in the investigated component as medical imaging maps do for diagnosis purpose. This method will also serve as a starting point in mesoscale simulation with meshing sensitivity based on the texture heterogeneity. It will provide a bridge between texture characterization and behavior simulation of components with texture heterogeneity. Macrotexture map will offer a linkage between crystal plasticity simulation in small length scale and finite element/difference simulation in large length scale.


Author(s):  
Angelina Folberth ◽  
Swaminath Bharadwaj ◽  
Nico van der Vegt

We report the effect of trimethylamine N-oxide (TMAO) on the solvation of nonpolar solutes in water studied with molecular dynamics (MD) simulations and free-energy calculations. The simulation data indicate the...


Science ◽  
2019 ◽  
Vol 366 (6463) ◽  
pp. 382-385 ◽  
Author(s):  
Nir Navon ◽  
Christoph Eigen ◽  
Jinyi Zhang ◽  
Raphael Lopes ◽  
Alexander L. Gaunt ◽  
...  

Scale-invariant fluxes are the defining property of turbulent cascades, but their direct measurement is a challenging experimental problem. Here we perform such a measurement for a direct energy cascade in a turbulent quantum gas. Using a time-periodic force, we inject energy at a large length scale and generate a cascade in a uniformly trapped three-dimensional Bose gas. The adjustable trap depth provides a high-momentum cutoff kD, which realizes a synthetic dissipation scale. This gives us direct access to the particle flux across a momentum shell of radius kD, and the tunability of kD allows for a clear demonstration of the zeroth law of turbulence. Moreover, our time-resolved measurements give unique access to the pre–steady-state dynamics, when the cascade front propagates in momentum space.


2019 ◽  
Vol 09 (05) ◽  
pp. 1950035
Author(s):  
Anupam Mishra ◽  
Dipak Kumar Khatua ◽  
Gobinda Das Adhikary ◽  
Naveen Kumar ◽  
Uma Shankar ◽  
...  

[Formula: see text][Formula: see text]TiO3-based lead-free piezoelectrics are considered for potential replacement of the lead-based commercial piezoceramics in high-power transducer applications. We have examined the role of grain size in influencing the structural-polar inhomogeneity of stoichiometric and off-stoichiometric [Formula: see text][Formula: see text]TiO3 (NBT), and its morphotropic-phase-boundary (MPB) derivative 0.94[Formula: see text][Formula: see text]TiO3-0.06BaTiO3 (NBT-6BT). Our study reveals that size effect comes into play in these systems on a very large length scale (on the scale of microns) considerably affecting its global structure and properties.


2017 ◽  
Vol 121 (21) ◽  
pp. 11300-11311 ◽  
Author(s):  
Victor T. Noronha ◽  
Francisco A. Sousa ◽  
Antonio G. Souza Filho ◽  
Cristiane A. Silva ◽  
Francisco A. Cunha ◽  
...  

2017 ◽  
Vol 118 (16) ◽  
Author(s):  
F. Bottegoni ◽  
C. Zucchetti ◽  
S. Dal Conte ◽  
J. Frigerio ◽  
E. Carpene ◽  
...  

2015 ◽  
Vol 32 (7) ◽  
pp. 2136-2165 ◽  
Author(s):  
Ming Xia

Purpose – The purpose of this paper is to present an upscale theory of the thermal-mechanical coupling particle simulation for non-isothermal problems in two-dimensional quasi-static system, under which a small length-scale particle model can exactly reproduce the same mechanical and thermal results with that of a large length-scale one. Design/methodology/approach – The objective is achieved by extending the upscale theory of particle simulation for two-dimensional quasi-static problems from an isothermal system to a non-isothermal one. Findings – Five similarity criteria, namely geometric, material (mechanical and thermal) properties, gravity acceleration, (mechanical and thermal) time steps, thermal initial and boundary conditions (Dirichlet/Neumann boundary conditions), under which a small-length-scale particle model can exactly reproduce both the mechanical and thermal behavior with that of a large length-scale model for non-isothermal problems in a two-dimensional quasi-static system are proposed. Furthermore, to test the proposed upscale theory, two typical examples subjected to different thermal boundary conditions are simulated using two particle models of different length scale. Originality/value – The paper provides some important theoretical guidances to modeling thermal-mechanical coupled problems at both the engineering length scale (i.e. the meter scale) and the geological length scale (i.e. the kilometer scale) using the particle simulation method directly. The related simulation results from two typical examples of significantly different length scales (i.e. a meter scale and a kilometer scale) have demonstrated the usefulness and correctness of the proposed upscale theory for simulating non-isothermal problems in two-dimensional quasi-static system.


IUCrJ ◽  
2015 ◽  
Vol 2 (1) ◽  
pp. 59-73 ◽  
Author(s):  
Takeji Hashimoto ◽  
Hiroki Murase

This article reports unique pattern formation processes and mechanismsviacrystallization of materials under external flow fields as one of the general problems of open nonequilibrium phenomena in statistical physics. The external fields effectively reduce step-by-step the exceedingly large free energy barriers associated with the reduction of the enormously large entropy necessary for crystallization into unique crystalline textures in the absence of the fields. The cascading reduction of the free energy barrier was discovered to be achieved as a consequence of a cascading evolution of a series of dissipative structures. Moreover, this cascading pattern evolution obeys the Ginzburg–Landau law. It first evolves a series of large-length-scale amorphous precursors driven by liquid–liquid phase separation under a relatively low bulk stress and then small-length-scale structures driven by a large local stress concentrated on the heterogeneous amorphous precursors, eventually leading to the formation of unique crystalline textures which cannot be developed free from the external fields. Here the multi-length-scale heterogeneous structures developed in the amorphous precursors play a dominant role in the triggering of the crystallization in the local regions subjected to a large stress concentration even under a relatively small applied bulk stress.


Sign in / Sign up

Export Citation Format

Share Document