Spectral analysis of blood pressure and heart rate variability during ace-inhibition and angiotensin II infusion.

1996 ◽  
Vol 9 (4) ◽  
pp. 124A
Author(s):  
H SCHACHINGER
1996 ◽  
Vol 19 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Tadashi Aono ◽  
Takayuki Sato ◽  
Masanori Nishinaga ◽  
Akiko Kawamoto ◽  
Toshio Ozawa

2014 ◽  
Vol 32 (3) ◽  
pp. 273-278 ◽  
Author(s):  
Yoji Kitagawa ◽  
Kenichi Kimura ◽  
Sohei Yoshida

Objectives To clarify changes in the cardiovascular autonomic nervous system function due to trigger point acupuncture, we evaluated differences in responses between acupuncture at trigger points and those at other sites using spectral analysis of heart rate variability. Methods Subjects were 35 healthy men. Before measurements began the subjects were assigned to a trigger point acupuncture or control group based on the presence/absence of referred pain on applying pressure to a taut band within the right tibialis anterior muscle. The measurements were conducted in a room with a temperature of 25°C, with subjects in a long sitting position after 10 min rest. Acupuncture needles were retained for 10 min at two sites on the right tibialis anterior muscle. ECG was performed simultaneously with measurements of blood pressure and the respiratory cycle. Based on the R–R interval on the ECG, frequency analysis was performed, low-frequency (LF) and high-frequency (HF) components were extracted and the ratio of LF to HF components (LF/HF) was evaluated. Results The trigger point acupuncture group showed a transient decrease in heart rate and an increase in the HF component but no significant changes in LF/HF. In the control group, no significant changes were observed in heart rate, the HF component or LF/HF. There were no consistent changes in systolic or diastolic blood pressure in either group. Conclusions These data suggest that acupuncture stimulation of trigger points of the tibialis anterior muscle transiently increases parasympathetic nerve activity.


2019 ◽  
pp. 72-77
Author(s):  
S. M. Zakharov

The time and spectral analysis of blood pressure signals (BP of systolic, diastolic, pulse) obtained in real time and reflecting the work of the heart at short time intervals is presented. As a time interval, a sequence of one hundred cardiac cycles was chosen. The main parameters of variability are determined. The proposed method of analysis is an analogue of heart rate variability (HRV), based on the study of RR cardiointervals. Spectral analysis of blood pressure signals shows differences in the degree of orderliness or disorder of individual frequencies or the spectrum as a whole. The presented methodology will allow to reveal further features for use in the diagnosis of various pathologies.


Hypertension ◽  
1997 ◽  
Vol 30 (4) ◽  
pp. 803-808 ◽  
Author(s):  
Gianfranco Parati ◽  
Alessandra Frattola ◽  
Marco Di Rienzo ◽  
Paolo Castiglioni ◽  
Giuseppe Mancia

2005 ◽  
Vol 289 (5) ◽  
pp. H1968-H1975 ◽  
Author(s):  
Rubens Fazan ◽  
Mauro de Oliveira ◽  
Valdo José Dias da Silva ◽  
Luis Fernando Joaquim ◽  
Nicola Montano ◽  
...  

The goal of this study was to determine the baroreflex influence on systolic arterial pressure (SAP) and pulse interval (PI) variability in conscious mice. SAP and PI were measured in C57Bl/6J mice subjected to sinoaortic deafferentation (SAD, n = 21) or sham surgery ( n = 20). Average SAP and PI did not differ in SAD or control mice. In contrast, SAP variance was enhanced (21 ± 4 vs. 9.5 ± 1 mmHg2) and PI variance reduced (8.8 ± 2 vs. 26 ± 6 ms2) in SAD vs. control mice. High-frequency (HF: 1–5 Hz) SAP variability quantified by spectral analysis was greater in SAD (8.5 ± 2.0 mmHg2) compared with control (2.5 ± 0.2 mmHg2) mice, whereas low-frequency (LF: 0.1–1 Hz) SAP variability did not differ between the groups. Conversely, LF PI variability was markedly reduced in SAD mice (0.5 ± 0.1 vs. 10.8 ± 3.4 ms2). LF oscillations in SAP and PI were coherent in control mice (coherence = 0.68 ± 0.05), with changes in SAP leading changes in PI (phase = −1.41 ± 0.06 radians), but were not coherent in SAD mice (coherence = 0.08 ± 0.03). Blockade of parasympathetic drive with atropine decreased average PI, PI variance, and LF and HF PI variability in control ( n = 10) but had no effect in SAD ( n = 6) mice. In control mice, blockade of sympathetic cardiac receptors with propranolol increased average PI and decreased PI variance and LF PI variability ( n = 6). In SAD mice, propranolol increased average PI ( n = 6). In conclusion, baroreflex modulation of PI contributes to LF, but not HF PI variability, and is mediated by both sympathetic and parasympathetic drives in conscious mice.


Sign in / Sign up

Export Citation Format

Share Document