Thermal expansion and fractional free volume changes of metallic glasses during heating

1991 ◽  
Vol 134 ◽  
pp. 996-999 ◽  
Author(s):  
Zheng Fu-Qian
1980 ◽  
Vol 41 (C8) ◽  
pp. C8-875-C8-877
Author(s):  
E. Girt ◽  
P. Tomić ◽  
A. Kuršumović ◽  
T. Mihać-Kosanović

1998 ◽  
Vol 554 ◽  
Author(s):  
C. Nagel ◽  
K. Rätzke ◽  
E. Schmidtke ◽  
F. Faupel

AbstractVolume changes in Zr46.7Ti8.3Cu7.5Ni10Be27.5 and Zr 65Al7.5Ni10Cu17.5 bulk metallic glasses have been observed by positron annihilation and density measurements. At low cooling rates excess volume of the order of 0.1 % is quenched in both glasses. Isothermal relaxation kinetics below the glass transition temperature obey a Kohlrausch law with exponents of β≈(0.3 ± 0.1). Structural relaxation is not accompanied by embrittlement, as indicated by simple mechanical tests. The outer surface plays a crucial role in annealing of excess volume, which can be restored by annealing above Tg. The observed free volume changes are at variance with the behavior of a perfectly strong glass. The temperature dependence of the positron lifetime is discussed in terms of thermal detrapping from shallow traps.


2004 ◽  
Vol 12 (10-11) ◽  
pp. 1073-1080 ◽  
Author(s):  
Biraja P. Kanungo ◽  
Stephen C. Glade ◽  
Palakkal Asoka-Kumar ◽  
Katharine M. Flores

2003 ◽  
Vol 806 ◽  
Author(s):  
Biraja P. Kanungo ◽  
Matthew J. Lambert ◽  
Katharine M. Flores

ABSTRACTThe free volume changes associated with deformation of metallic glasses play an important role in strain localization in shear bands. However the details of these structural changes during inhomogeneous deformation are unclear. In this study, the free volume changes in Cu60Zr30Ti10 and Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glasses were examined and quantified using differential scanning calorimetry following rolling and low temperature annealing. It was found that the height of the endothermic peak associated with the glass transition decreased following deformation whereas annealing resulted in an increase in the peak height. Additionally, the exothermic event associated with structural relaxation prior to the glass transition occurred at a lower temperature after rolling in the Zr-based system. Surprisingly, a similar shift in the onset temperature was not observed in the Cu-based system, suggesting a different structural relaxation mechanism. The Zr-based system was successfully modeled and the results indicated that the free volume increased ∼4% with inhomogeneous deformation and decreased ∼14% with annealing, consistent with expectations. In an effort to further characterize strain localization in shear bands, the development of a crack tip damage zone in a Zr-based bulk metallic glass composite was studied using scanning electron and atomic force microscopy. The first shear band developed at an angle of ∼60° from the crack propagation direction. This is discussed in light of the Mohr-Coulomb yield criterion for metallic glasses. The reinforcement phase arrested the growth of individual shear bands, while accumulated damage resulted in the shear bands cutting through the crystalline phase, ultimately resulting in crack branching and failure.


2007 ◽  
Vol 18 (11) ◽  
pp. 921-924 ◽  
Author(s):  
Klára Pintye-Hódi ◽  
Károly Süvegh ◽  
Tamás Marek ◽  
Romána Zelkó

Sign in / Sign up

Export Citation Format

Share Document