fractional free volume
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 2)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 226
Author(s):  
Jinsong Yang ◽  
Weitao Lou

The effects of oxidative aging on the static and dynamic properties of nitrile rubber at the molecular scale were investigated by molecular dynamics simulation. The aged nitrile rubber models were constructed by introducing hydroxyl groups and carbonyl groups into rubber molecular chains to mimic oxidative aging. The static and dynamic properties of the unaged and aged nitrile rubber under different conditions were evaluated by mean square displacement, self-diffusion coefficients, hydrogen bond, fractional free volume, radial distribution function, cohesive energy density and solubility parameter. The results show that the elevated temperature intensified significantly the mobility of rubber molecular chains and fractional free volume, while the compressive strain displayed the opposite effect resulting in packing and rearrangement of rubber chains. The introduction of hydroxyl groups and carbonyl groups enhanced the polarity, intermolecular interactions, the volume and rigidity of molecular chains, implying weaker mobility of molecular chains as compared to unaged models. The compressive strain and oxidative aging both decreased the fractional free volume, which inhibited gaseous and liquid diffusion into the rubber materials, and slowed down the oxidative aging rate. This study provides insights to better understand the effect of molecular changes due to oxidative aging on the structural and dynamic properties of rubber materials at the molecular level.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2464
Author(s):  
Fei Teng ◽  
Jian Wu ◽  
Benlong Su ◽  
Youshan Wang

Tribological properties of tread rubber is a key problem for the safety and durability of large aircraft tires. So, new molecular models of carbon nanotube (CNT) reinforced vulcanized natural rubber (VNR) composites have been developed to study the enhanced tribological properties and reveal the reinforced mechanism. Firstly, the dynamic process of the CNT agglomeration is discussed from the perspectives of fractional free volume (FFV) and binding energy. Then, a combined explanation of mechanical and interfacial properties is given to reveal the CNT-reinforced mechanism of the coefficient of friction (COF). Results indicate that the bulk, shear and Young’s modulus increase with the increasement of CNT, which are increasement of 19.13%, 21.11% and 26.89% in 15 wt.% CNT/VNR composite compared to VNR; the predicted results are consistent with the existing experimental conclusions, which can be used to reveal the CNT-reinforced mechanism of the rubber materials at atomic scale. It can also guide the design of rubber material prescription for aircraft tire. The molecular dynamics study provides a theoretical basis for the design and preparation of high wear resistance of tread rubber materials.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2745
Author(s):  
Fan Feng ◽  
Can-Zeng Liang ◽  
Ji Wu ◽  
Martin Weber ◽  
Christian Maletzko ◽  
...  

Although various polymer membrane materials have been applied to gas separation, there is a trade-off relationship between permeability and selectivity, limiting their wider applications. In this paper, the relationship between the gas permeation behavior of polyphenylsulfone(PPSU)-based materials and their chemical structure for gas separation has been systematically investigated. A PPSU homopolymer and three kinds of 3,3′,5,5′-tetramethyl-4,4′-biphenol (TMBP)-based polyphenylsulfone (TMPPSf) copolymers were synthesized by controlling the TMBP content. As the TMPPSf content increases, the inter-molecular chain distance (or d-spacing value) increases. Data from positron annihilation life-time spectroscopy (PALS) indicate the copolymer with a higher TMPPSf content has a larger fractional free volume (FFV). The logarithm of their O2, N2, CO2, and CH4 permeability was found to increase linearly with an increase in TMPPSf content but decrease linearly with increasing 1/FFV. The enhanced permeability results from the increases in both sorption coefficient and gas diffusivity of copolymers. Interestingly, the gas permeability increases while the selectivity stays stable due to the presence of methyl groups in TMPPSf, which not only increases the free volume but also rigidifies the polymer chains. This study may provide a new strategy to break the trade-off law and increase the permeability of polymer materials largely.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4252
Author(s):  
Marwa Nabil ◽  
Kamal Reyad Mahmoud ◽  
Raghda Nomier ◽  
El-Maghraby El-Maghraby ◽  
Hussien Motaweh

Nano-porous silicon (NPS) powder synthesis is performed by means of a combination of the ultra-sonication technique and the alkali chemical etching process, starting with a commercial silicon powder. Various characterization techniques {X-ray powder diffraction, transmission electron microscopy, Fourier Transform Infrared spectrum, and positron annihilation lifetime spectroscopy} are used for the description of the product’s properties. The NPS product is a new environmentally friendly material used as an adsorbent agent for the acidic azo-dye, Congo red dye. The structural and free volume changes in NPS powder are probed using positron annihilation lifetime (PALS) and positron annihilation Doppler broadening (PADB) techniques. In addition, the mean free volume (VF), as well as fractional free volume (Fv), are also studied via the PALS results. Additionally, the PADB provides a clear relationship between the core and valence electrons changes, and, in addition, the number of defect types present in the synthesized samples. The most effective parameter that affects the dye removal process is the contact time value; the best time for dye removal is 5 min. Additionally, the best value of the CR adsorption capacity by NPS powder is 2665.3 mg/g at 100 mg/L as the initial CR concentration, with an adsorption time of 30 min, without no impact from temperature and pH. So, 5 min is the enough time for the elimination of 82.12% of the 30 mg/L initial concentration of CR. This study expresses the new discovery of a cheap and safe material, in addition to being environmentally friendly, without resorting to any chemical additives or heat treatments.


2021 ◽  
pp. 119526
Author(s):  
Albert X. Wu ◽  
Sharon Lin ◽  
Katherine Mizrahi Rodriguez ◽  
Francesco M. Benedetti ◽  
Taigyu Joo ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1329
Author(s):  
Maijun Li ◽  
Zhibo Zheng ◽  
Zhiguang Zhang ◽  
Nanwen Li ◽  
Siwei Liu ◽  
...  

To improve the interfacial compatibility of mixed matrix membranes (MMMs) for gas separation, microporous polyimide particle (AP) was designed, synthesized, and introduced into intrinsic microporous polyimide matrix (6FDA-Durene) to form “all polyimide” MMMs. The AP fillers showed the feature of thermal stability, similar density with polyimide matrix, high porosity, high fractional free volume, large microporous dimension, and interpenetrating network architecture. As expected, the excellent interfacial compatibility between 6FDA-Durene and AP without obvious agglomeration even at a high AP loading of 10 wt.% was observed. As a result, the CO2 permeability coefficient of MMM with AP loading as low as 5 wt.% reaches up to 1291.13 Barrer, which is 2.58 times that of the pristine 6FDA-Durene membrane without the significant sacrificing of ideal selectivity of CO2/CH4. The improvement of permeability properties is much better than that of the previously reported MMMs, where high filler content is required to achieve a high permeability increase but usually leads to significant agglomeration or phase separation of fillers. It is believed that the excellent interfacial compatibility between the PI fillers and the PI matrix induce the effective utilization of porosity and free volume of AP fillers during gas transport. Thus, a higher diffusion coefficient of MMMs has been observed than that of the pristine PI membrane. Furthermore, the rigid polyimide fillers also result in the excellent anti-plasticization ability for CO2. The MMMs with a 10 wt.% AP loading shows a CO2 plasticization pressure of 300 psi.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dylan M. Anstine ◽  
Dai Tang ◽  
David S. Sholl ◽  
Coray M. Colina

AbstractThe enormous number of combinations of adsorbing molecules and porous materials that exist is known as adsorption space. The adsorption space for microporous polymers has not yet been systematically explored, especially when compared with efforts for crystalline adsorbents. We report molecular simulation data for the adsorptive and structural properties of polymers of intrinsic microporosity with a diverse set of adsorbate species with 345 distinct adsorption isotherms and over 240,000 fresh and swollen structures. These structures and isotherms were obtained using a sorption-relaxation technique that accounts for the critical role of flexibility of the polymeric adsorbents. This enables us to introduce a set of correlations that can estimate adsorbent swelling and fractional free volume dilation as a function of adsorbate uptake based on readily characterized properties. The separation selectivity of the 276 distinct binary molecular pairs in our data is reported and high-performing adsorbent systems are identified.


2021 ◽  
Author(s):  
Xueshen Liu ◽  
Xincong Zhou ◽  
Fuming Kuang ◽  
Houxiu Zuo ◽  
Jian Huang

Abstract This paper investigated the mechanism of enhancing the mechanical and tribological properties of nitrile rubber (NBR) with SiO 2 on the molecular scale. Molecular dynamics (MD) simulations were performed on molecular structure models of pure NBR, NBR/SiO 2 and three-layer friction pairs. The results showed that the hydrogen bonds and interfacial interaction between SiO 2 and NBR molecular chains decreased the fractional free volume of NBR nanocomposites, and increased the shear modulus of NBR by 25% compared with that of pure NBR. During the friction process, SiO 2 decreased the radius of gyration of NBR molecular chains and effectively lowered the peak atomic velocity, the peak temperature and the peak friction stress at the interface between NBR and copper atoms. The average friction stress on NBR/SiO 2 was 34% lower than that on NBR, which meant the tribological properties of NBR were significantly improved by SiO 2 . The mechanism of SiO 2 reinforcing NBR on a molecular scale can lay a theoretical foundation for the design of water-lubricated rubber bearings.


2020 ◽  
Vol 10 (12) ◽  
pp. 4753-4758
Author(s):  
Olha Shpotyuk ◽  
Adam Ingram ◽  
Oleh Shpotyuk ◽  
Jozef Cebulski ◽  
Nina Smolar

AbstractThe possibility of application of positron annihilation lifetime (PAL) spectroscopy to commercially available dimethacrylate-based dental restorative composites Dipol® (Oksomat-AN Ltd, Ukraine) subjected to photopolymerization due to light curing is analyzed. The governing annihilation process in these composites is identified as mixed positron (e+)-positronium (Ps) trapping, where Ps decaying is caused entirely by input from free-volume holes in polymer matrix superimposed on free e+-trapping contribution from interfacial free-volume holes between filler nanoparticles and surrounded polymer matrix. Photopolymerization shrinkage is revealed through decrease in the average lifetime of annihilating positrons due to opposite changes in Ps-decaying and e+-trapping channels. The growing light-activated polymerization is characteristic of both intensities related to the second and third components in the unconstrained ×3-term decomposed PAL spectra, accompanied by decrease in the corresponding lifetimes. This process resulted in enhanced trapping rate in the defects and depressed fractional free-volume saturation with light curing. Light exposure causes smaller voids in composites owing to free-volume fragmentation in Ps- and e+-trapping sites. The microstructure scenario for these transformations includes photo-induced cross-linking of structural chains in the polymer matrix, followed by conversion of o-Ps traps in interfacial free-volume voids near agglomerated filler nanoparticles. A meaningful description of this process is developed on the basis of the semi-empirical model exploring the  ×3– ×2-coupling decomposition algorithm.


Sign in / Sign up

Export Citation Format

Share Document