High temperature, low cycle fatigue behaviour of AISI type 316LN base metal, 316LN-316 weld joint and 316 all-weld metal

1992 ◽  
Vol 149 (2) ◽  
pp. L9-L12 ◽  
Author(s):  
M. Valsan ◽  
K.Bhanu Sankara Rao ◽  
R. Sandhya ◽  
S.L. Mannan
Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4014 ◽  
Author(s):  
Qin Tian ◽  
Hanqing Zhuge ◽  
Xu Xie

Based on the continuum damage mechanics model (CDM) for monotonic tension, a new CDM for ultra-low-cycle fatigue (ULCF) is put forward to predict ULCF damage of steel and its weld joint under strong earthquakes. The base metal, heat-affected zone and weld metal of Q345qC steel were considered as research objects, and the uniaxial plastic strain threshold of the CDM model was calibrated via tensile testing combined with finite element analysis of notched round bar specimens. ULCF tests of the base metal and weld specimens were carried out to analyse their fatigue life, fracture life and post-fracture path. Based on the calibrated uniaxial plastic strain threshold, the finite element models of base metal and weld specimens suitable for CDM model were established by ABAQUS. The calibration results of material parameters show that the weld metal has the lowest plastic strain threshold and the largest dispersion coefficient at the plastic strain threshold. Prediction results under cyclic loading with a large strain were compared with experimental values, and results showed that the predicted crack initiation and fracture lives of the base metal and weld specimens are lower than their corresponding experimental values. The predicted errors of crack initiation life and fracture life decrease with increasing strain level. The development law of the damage variable reveals exponential growth combined with a stepped pattern. The CDM model can also accurately predict the number of cycles to initial damage. Taking the results together, the CDM of the ULCF of the base metal and weld specimens could successfully predict post-fracture paths.


Author(s):  
T. P. Farragher ◽  
S. Scully ◽  
N. P. O’Dowd ◽  
S. B. Leen

The high temperature low cycle fatigue behaviour of P91 weld metal (WM) and weld joints (cross-weld) is presented. Strain-controlled tests have been carried out at 400 °C and 500 °C. The cyclic behaviour of the weld material (WM) and cross-weld (CW) specimens are compared with previously published base material (BM) tests. The weld material is shown to give a significantly harder and stiffer stress-strain response than both the base material and the cross-weld material. The cross-weld tests exhibited a cyclic stress-strain response which was similar to that of the base material. All specimen types exhibited cyclic softening but the rate of softening exhibited by the CW specimens was lower than that of the base and all-weld tests. Finite element models of the base metal, weld metal and CW test specimens are developed and employed for identification of the cyclic viscoplasticity material parameters. HAZ cracking was the primary mode of failure for the cross-weld tests.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
T. P. Farragher ◽  
S. Scully ◽  
N. P. O'Dowd ◽  
C. J. Hyde ◽  
S. B. Leen

The high temperature low cycle fatigue behavior of P91 weld metal (WM) and weld joints (cross-weld) is presented. Strain-controlled tests have been carried out at 400 °C and 500 °C. The cyclic behavior of the weld material (WM) and cross-weld (CW) specimens are compared with previously published base material (BM) tests. The weld material is shown to give a significantly harder and stiffer stress–strain response than both the base material and the cross-weld material. The cross-weld tests exhibited a cyclic stress–strain response, which was similar to that of the base material. All specimen types exhibited cyclic softening but the degree of softening exhibited by the cross-weld specimens was lower than that of the base material and all-weld tests. Finite element models of the base metal, weld metal and cross-weld test specimens are developed and employed for identification of the cyclic viscoplasticity material parameters. Heat affected zone (HAZ) cracking was observed for the cross-weld tests.


2014 ◽  
Vol 3 ◽  
pp. 2201-2206 ◽  
Author(s):  
Seon-Jin Kim ◽  
Pil-Ho Choi ◽  
Rando Tungga Dewa ◽  
Woo-Gon Kim ◽  
Min-Hwan Kim

Sign in / Sign up

Export Citation Format

Share Document