Expression of protein kinase C subspecies IX cultured human melanocytes and melanoma cells

1992 ◽  
Vol 4 (2) ◽  
pp. 132
Author(s):  
M. Oka ◽  
T. Horikawa ◽  
M. Ueda ◽  
Y. Funasaka ◽  
K. Nishino ◽  
...  
1994 ◽  
Vol 107 (9) ◽  
pp. 2591-2597 ◽  
Author(s):  
C.J. Carsberg ◽  
H.M. Warenius ◽  
P.S. Friedmann

The mechanism by which ultraviolet radiation induces melanogenesis in epidermal melanocytes is unknown. Previous observations that in cultured human melanocytes 1-oleoyl-2-acetylglycerol augmented both basal and ultraviolet radiation-induced melanogenesis, suggested that the responses were mediated via protein kinase C. However, paradoxically the phorbol ester TPA was without effect. Therefore, the present study has examined the involvement of protein kinase C in melanogenesis. Analysis of the isozyme profile of human melanocytes revealed the presence of protein kinase C alpha, beta I, epsilon and zeta but not the isozyme eta. Following exposure to 500 nM TPA for 24 hours, isozymes alpha, beta I and epsilon were downregulated, but zeta was unaffected. Similar isozyme profiles were observed in S91 and SKMEL3 melanoma cells. The melanogenic responses to 1-oleoyl-2-acetylglycerol and ultraviolet radiation were unaffected by inhibition of protein kinase C with Ro31-8220, or ablation by downregulation with 500 nM TPA, in human melanocytes and melanoma cells. 1-Oleoyl-2-acetylglycerol had no effect on protein kinase C activity in human melanocytes, as measured by rapid phosphorylation of the 80 kDa protein myristoylated alanine-rich C kinase substrate (MARCKS). Ultraviolet radiation induced a small increase in MARCKS protein phosphorylation but this effect was inhibited by pretreatment for 24 hours with 500 nM TPA, which had no effect on ultraviolet-induced melanogenesis. Overall, these findings indicate that 1-oleoyl-2-acetylglycerol and ultraviolet radiation activate melanogenesis via protein kinase C-independent pathways.


1996 ◽  
Vol 44 (2) ◽  
pp. 177-182 ◽  
Author(s):  
J Timar ◽  
B Liu ◽  
R Bazaz ◽  
K V Honn

In B16a melanoma cells, protein kinase-C-alpha (PKC alpha) is immunomorphologically associated with cytoplasmic vesicles in addition to the previously observed locations (plasma membrane, cytoskeleton, nucleus), as detected with monoclonal antibody (MAb) MC3a. Subcellular fractionation indicated that the authentic 80-KD protein as well as PKC activity can be detected in several particulate fractions except for L2, which contains dense lysosomes. The highest PKC activity is associated with the cytosol-ultralight vesicles and the L1 fraction (containing plasma membrane, endosomes, and the Golgi apparatus). Both of these fractions contained the fluid-phase endocytosis marker peroxidase, indicating that PKC alpha, in addition to other subcellular structures, is most probably associated with endosomal membranes in B16a melanoma cells.


2004 ◽  
Vol 199 (3) ◽  
pp. 381-387 ◽  
Author(s):  
Konstantin Krasagakis ◽  
Carsten Lindschau ◽  
Sabine Fimmel ◽  
J�rgen Eberle ◽  
Petra Quass ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 346 ◽  
Author(s):  
Purusottam Mohapatra ◽  
Vikas Yadav ◽  
Maren Toftdahl ◽  
Tommy Andersson

WNT5A is a well-known mediator of melanoma cell invasion and metastasis via its ability to activate protein kinase C (PKC), which is monitored by phosphorylation of the endogenous PKC substrate myristoylated alanine-rich c-kinase substrate (MARCKS). However, a possible direct contribution of MARCKS in WNT5A-mediated melanoma cell invasion has not been investigated. Analyses of melanoma patient databases suggested that similar to WNT5A expression, MARCKS expression appears to be associated with increased metastasis. A relationship between the two is suggested by the findings that recombinant WNT5A (rWNT5A) induces both increased expression and phosphorylation of MARCKS, whereas WNT5A silencing does the opposite. Moreover, WNT5A-induced invasion of melanoma cells was blocked by siRNA targeting MARCKS, indicating a crucial role of MARCKS expression and/or its phosphorylation. Next, we employed a peptide inhibitor of MARCKS phosphorylation that did not affect MARCKS expression and found that it abolished WNT5A-induced melanoma cell invasion. Similarly, rWNT5A induced the accumulation of phosphorylated MARCKS in membrane protrusions at the leading edge of melanoma cells. Our results demonstrate that WNT5A-induced phosphorylation of MARCKS is not only an indicator of PKC activity but also a crucial regulator of the metastatic behavior of melanoma and therefore an attractive future antimetastatic target in melanoma patients.


Sign in / Sign up

Export Citation Format

Share Document