Field-oriented control induction machine and control by sliding mode

1997 ◽  
Vol 5 (2) ◽  
pp. 121-136 ◽  
Author(s):  
Mohamed Ouali ◽  
Mohamed B.A. Kamoun
2019 ◽  
Author(s):  
Vishal.P. Virani ◽  
Swapnil Arya ◽  
Jaydeepsinh.C Baria

Author(s):  
Bin Zhao ◽  
Zhenxin Feng ◽  
Jianguo Guo

The problem of the integrated guidance and control (IGC) design for strap-down missile with the field-of-view (FOV) constraint is solved by using the integral barrier Lyapunov function (iBLF) and the sliding mode control theory. Firstly, the nonlinear and uncertainty state equation with non-strict feedback form for IGC design is derived by using the strap-down decoupling strategy. Secondly, a novel adaptive finite time disturbance observer is proposed to estimate the uncertainties based on an improved adaptive gain super twisting algorithm. Thirdly, the special time-varying sliding variable is designed and the iBLF is employed to handle the problem of FOV constraint. Theoretical derivation and simulation show that the IGC system is globally uniformly ultimately bounded and the FOV angle constraint is also guaranteed not only during the reaching phase but also during the sliding mode phase.


2012 ◽  
Vol 349 (2) ◽  
pp. 493-509 ◽  
Author(s):  
Zhang Zexu ◽  
Wang Weidong ◽  
Li Litao ◽  
Huang Xiangyu ◽  
Cui Hutao ◽  
...  

Author(s):  
Hui Li ◽  
Linxuan Zhang ◽  
Tianyuan Xiao ◽  
Jietao Dong

This paper introduces a CPS application for intelligent aeroplane assembly. At first, the CPS structure is presented, which acquires the characteristics of general CPS and enables "simulation-based planning and control" to achieve high level intelligent assembly. Then the paper puts forward data fusion estimation algorithm under synchronous and asynchronous sampling, respectively. The experiment shows that global optimal distributed fusion estimation under synchronized sampling proves to be closer to the actual value compared with ordinary weighted estimation, and multi-scale distributed fusion estimation algorithm of wavelet under asynchronous sampling does not need time registration, it can also directly link to data, and the error is smaller. This paper presents hybrid control strategy under the circumstance of joint action of the inner and outer loop to address the problems caused by the less controllable feature of the parallel mechanism when undertaking online process simulation and control. A robust adaptive sliding mode controller is designed based on disturbance observer to restrain inner interference and maintain robustness. At the same time, an outer collaborative trajectory planning is also designed. All the experiment results show the feasibility of above proposed methods.


Sign in / Sign up

Export Citation Format

Share Document