Hollow fiber membrane bioreactors for treating water and air streams contaminated with chlorinated solvents

1994 ◽  
Vol 14 (3-4) ◽  
pp. 356
Author(s):  
Gerald E. Speitel ◽  
George Georgiou
Desalination ◽  
2002 ◽  
Vol 143 (3) ◽  
pp. 219-228 ◽  
Author(s):  
S.P. Hong ◽  
T.H. Bae ◽  
T.M. Tak ◽  
S. Hong ◽  
A. Randall

2014 ◽  
Vol 471 ◽  
pp. 347-361 ◽  
Author(s):  
Ilaria E. De Napoli ◽  
Elisabetta M. Zanetti ◽  
Gionata Fragomeni ◽  
Ermenegildo Giuzio ◽  
Alberto L. Audenino ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Seung Mi Yoo ◽  
Vivan W.C. Lau ◽  
Craig Aarts ◽  
Bojana Bojovic ◽  
Gregory Steinberg ◽  
...  

Biofouling ◽  
2018 ◽  
Vol 34 (8) ◽  
pp. 912-924 ◽  
Author(s):  
Kibaek Lee ◽  
Jun-Seong Park ◽  
Tahir Iqbal ◽  
Chang Hyun Nahm ◽  
Pyung-Kyu Park ◽  
...  

1983 ◽  
Vol 46 (1) ◽  
pp. 264-278 ◽  
Author(s):  
Douglas S. Inloes ◽  
Dean P. Taylor ◽  
Stanley N. Cohen ◽  
Alan S. Michaels ◽  
Channing R. Robertson

2004 ◽  
Vol 49 (11-12) ◽  
pp. 223-230 ◽  
Author(s):  
R. Nerenberg ◽  
B.E. Rittmann

Many oxidized pollutants, such as nitrate, perchlorate, bromate, and chlorinated solvents, can be microbially reduced to less toxic or less soluble forms. For drinking water treatment, an electron donor must be added. Hydrogen is an ideal electron donor, as it is non-toxic, inexpensive, and sparsely soluble. We tested a hydrogen-based, hollow-fiber membrane biofilm reactor (MBfR) for reduction of perchlorate, bromate, chlorate, chlorite, chromate, selenate, selenite, and dichloromethane. The influent included 5 mg/L nitrate or 8 mg/L oxygen as a primary electron accepting substrate, plus 1 mg/L of the contaminant. The mixed-culture reactor was operated at a pH of 7 and with a 25 minute hydraulic detention time. High recirculation rates provided completely mixed conditions. The objective was to screen for the reduction of each contaminant. The tests were short-term, without allowing time for the reactor to adapt to the contaminants. Nitrate and oxygen were reduced by over 99 percent for all tests. Removals for the contaminants ranged from a minimum of 29% for chlorate to over 95% for bromate. Results show that the tested contaminants can be removed as secondary substrates in an MBfR, and that the MBfR may be suitable for treating these and other oxidized contaminants in drinking water.


Sign in / Sign up

Export Citation Format

Share Document