phenol biodegradation
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 36)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Vol 204 (1) ◽  
Author(s):  
Amjad Al-Tarawneh ◽  
Khaled M. Khleifat ◽  
Ibrahim N. Tarawneh ◽  
Kholoud Shiyyab ◽  
Tayel El-Hasan ◽  
...  

Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 643
Author(s):  
Kavilasni Subramaniam ◽  
Siti Aqlima Ahmad ◽  
Peter Convey ◽  
Noor Azmi Shaharuddin ◽  
Khalilah Abdul Khalil ◽  
...  

Since the heroic age of Antarctic exploration, the continent has been pressurized by multiple anthropogenic activities, today including research and tourism, which have led to the emergence of phenol pollution. Natural attenuation rates are very slow in this region due to the harsh environmental conditions; hence, biodegradation of phenol using native bacterial strains is recognized as a sustainable remediation approach. The aim of this study was to analyze the effectiveness of phenol degradation by a binary consortium of Antarctic soil bacteria, Arthrobacter sp. strain AQ5-06, and Arthrobacter sp. strain AQ5-15. Phenol degradation by this co-culture was statistically optimized using response surface methodology (RSM) and tolerance of exposure to different heavy metals was investigated under optimized conditions. Analysis of variance of central composite design (CCD) identified temperature as the most significant factor that affects phenol degradation by this consortium, with the optimum temperature ranging from 12.50 to 13.75 °C. This co-culture was able to degrade up to 1.7 g/L of phenol within seven days and tolerated phenol concentration as high as 1.9 g/L. Investigation of heavy metal tolerance revealed phenol biodegradation by this co-culture was completed in the presence of arsenic (As), aluminum (Al), copper (Cu), zinc (Zn), lead (Pb), cobalt (Co), chromium (Cr), and nickel (Ni) at concentrations of 1.0 ppm, but was inhibited by cadmium (Cd), silver (Ag), and mercury (Hg).


2021 ◽  
Vol 5 (4) ◽  
pp. 75
Author(s):  
Evgenia Vasileva ◽  
Tsvetomila Parvanova-Mancheva ◽  
Venko Beschkov ◽  
Zlatka Alexieva ◽  
Maria Gerginova ◽  
...  

It is shown that bacteria Bradyrhizobium japonicum 273 were capable of degrading phenol at moderate concentrations either in a free cell culture or by immobilized cells on granulated activated carbon particles. The amount of degraded phenol was greater in an immobilized cell preparation than in a free culture. The application of a constant electric field during cultivation led to enhanced phenol biodegradation in a free culture and in immobilized cells on granulated activated carbon. The highest phenol removal efficiency was observed for an anode potential of 1.0 V/S.H.E. The effect was better pronounced in a free culture. The enzyme activities of free cells for phenol oxidation and benzene ring cleavage were very sensitive to the anode potential in the first two steps of the metabolic pathway of phenol biodegradation catalyzed by phenol hydroxylase—catechol-1,2-dioxygenase and catechol-2,3-dioxygenase. It was observed that at an anode potential of 0.8 V/S.H.E., the meta-pathway of cleavage of the benzene ring catalyzed by catechol-2,3-dioxygenase became competitive with the ortho-pathway, catalyzed by catechol-1,2-dioxygenase. The obtained results showed that the positive effect of constant electric field on phenol biodegradation was rather due to electric stimulation of enzyme activity than electrochemical anode oxidation.


2021 ◽  
Vol 882 (1) ◽  
pp. 012071
Author(s):  
A Murniati ◽  
B Buchari ◽  
S Gandasasmita ◽  
Z Nurachman ◽  
VA Kusumaningtiyas ◽  
...  

Abstract Cracking coal-forming organic compounds during the gasification process produces liquid waste containing phenolic compounds that require special handling based on their toxicity. As one of the components, there is liquid waste resulting from the coal gasification process. The purpose of this research was to study the activity of polyphenol oxidase (PPO) on phenol after the addition of Cu2+ to purple eggplant (Solanum melongena L.) extract and its potential to work more effectively in phenol biodegradation for coal wastewater containing phenol. Enzyme activity and phenol determination were carried out spectrophotometrically. The results showed PPO activity of 25.90-38.10 U/mL; 4.0 mM phenol and the activity of PPO-Cu2+ was 21.58-46.32 U/mL; 2-10 mM CuSO4; 2.0-4.0 mM phenol. Based on Michaelis Menten’s graph, the initial rate of PPO-Cu2+ was 0.015 mM/min and the initial rate of PPO was 0.15 mM/min using 2 mM phenol as a substrate. Lineweaver-Burk’s graph shows the KM of PPO-Cu2+ = 6.92 mM, which is lower than KM of PPO = 13.05 mM. Its means that the phenol response has a higher affinity for PPO-Cu2+ than PPO. The application of PPO-Cu2+ in purple eggplant extract works effectively as much as 46.7% for artificial coal liquid waste containing phenol.


2021 ◽  
pp. 1-10
Author(s):  
Manas Barik ◽  
Chidananda Prasad Das ◽  
Sangeeta Raut ◽  
Biswanath Mahanty ◽  
Naresh Kumar Sahoo

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6058
Author(s):  
Agnieszka Gąszczak ◽  
Elżbieta Szczyrba ◽  
Anna Szczotka ◽  
Izabela Greń

This study focuses on the phenol biodegradation kinetics by Stenotrophomonas maltophilia KB2 in a nickel-contaminated medium. Initial tests proved that a nickel concentration of 33.3 mg·L−1 caused a cessation of bacterial growth. The experiments were conducted in a batch bioreactor in several series: without nickel, at constant nickel concentration and at varying metal concentrations (1.67–13.33 g·m−3). For a constant Ni2+ concentration (1.67 or 3.33 g·m−3), a comparable bacterial growth rate was obtained regardless of the initial phenol concentration (50–300 g·m−3). The dependence µ = f (S0) at constant Ni2+ concentration was very well described by the Monod equations. The created varying nickel concentrations experimental database was used to estimate the parameters of selected mathematical models, and the analysis included different methods of determining metal inhibition constant KIM. Each model showed a very good fit with the experimental data (R2 values were higher than 0.9). The best agreement (R2 = 0.995) was achieved using a modified Andrews equation, which considers the metal influence and substrate inhibition. Therefore, kinetic equation parameters were estimated: µmax = 1.584 h−1, KS = 185.367 g·m−3, KIS = 106.137 g·m−3, KIM = 1.249 g·m−3 and n = 1.0706.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nan Xu ◽  
Chong Qiu ◽  
Qiyuan Yang ◽  
Yunzeng Zhang ◽  
Mingqi Wang ◽  
...  

Phenol is a common environmental contaminant. The purpose of this study was to isolate phenol-degrading microorganisms from wastewater in the sections of the Chinese Medicine Manufactory. The phenol-degrading Acinetobacter lwoffii NL1 was identified based on a combination of biochemical characteristics and 16S rRNA genes. To analyze the molecular mechanism, the whole genome of A. lwoffii NL1 was sequenced, yielding 3499 genes on one circular chromosome and three plasmids. Enzyme activity analysis showed that A. lwoffii NL1 degraded phenol via the ortho-cleavage rather than the meta-cleavage pathway. Key genes encoding phenol hydroxylase and catechol 1,2-dioxygenase were located on a megaplasmid (pNL1) and were found to be separated by mobile genetic elements; their function was validated by heterologous expression in Escherichia coli and quantitative real-time PCR. A. lwoffii NL1 could degrade 0.5 g/L phenol within 12 h and tolerate a maximum of 1.1 g/L phenol, and showed resistance against multiple antibiotics and heavy metal ions. Overall, this study shows that A. lwoffii NL1 can be potentially used for efficient phenol degradation in heavy metal wastewater treatment.


Author(s):  
Sreeja Mole S. S ◽  
D. S. Vijayan ◽  
M. Anand ◽  
M. Ajona ◽  
T. Jarin

Abstract In the present investigation, Achromobacter denitrifacians was isolated from industrial wastewater and used in the degradation of para nitro-phenol. Experiments were made as a function of different carbon sources, organic and inorganic nitrogen sources and metal ions to analyse the removal efficiency of para nitro-phenol present in the industrial wastewater sources. Observations revealed that the rate of phenol biodegradation was significantly affected by pH, temperature of incubation, glucose, peptone and metal ion concentration. The optimal conditions for phenol removal was found to be pH of 7.5, temperature, 35 °C and 0.25 gL−1 supplemented glucose level, 0.25 gL−1 supplemented peptone level, and 0.01 gL−1 zinc ion. The key importance of the present study is the utilization of native bacterial strain isolated from the industrial effluent water itself having an impending role in the bioremediation process of phenol.


Author(s):  
Doaa Montaser Ahmed Khali ◽  
Mohamed Salah Massoud ◽  
Soad A El-Zayat ◽  
Magdi A El-Sayed

Background and Objectives: The use of endophytic fungi for management of phenol residue in paper and pulp industries has been shown as cost-effective and eco-friendly approach. In this study, isolation of endophytic fungi from roots, stems, and leaves of Hibiscus sabdariffa was conducted. Additionally, the isolated fungi were examined for their ability to degrade phenol and its derivatives in paper and pulp industrial samples, using different growth conditions. Materials and Methods: Out of 35 isolated endophyitc fungi, 31 were examined for their phenol biodegradation capacity using Czapek Dox broth medium containing Catechol and Resorcinol as a sole carbon source at final concentrations of 0.4, 0.6 and 0.8%. Results: A total of 35 fungal species belonging to 18 fungal genera were isolated and identified from different parts of H. sabdariffa plants. All strains have the capability for degrading phenol and their derivatives with variable extents. The optimum condition of degrading phenol in paper and pulp effluent samples by Fusarium poae11r7 were at pH 3-5, temperature at 28-35°C, good agitation speed at no agitation and 100 rpm. Conclusion: All endophytic fungal species can utilize phenol and its derivatives as a carbon source and be the potential to degrade phenol in industrial contaminants.


Sign in / Sign up

Export Citation Format

Share Document