Effluent treatment for the textile industry

1995 ◽  
Vol 1995 (59) ◽  
pp. 6-7
2017 ◽  
Vol 11 (1) ◽  
pp. 109-126 ◽  
Author(s):  
Deepak Kumar ◽  
Jyoti Pandey ◽  
Vinit Raj ◽  
Pramendra Kumar

Introduction: Graft copolymerization is one of the most promising technique uses to modify the properties of naturally available polymers with a minimum loss in their native characteristics. Methods and Materials: Graft copolymerization is a very significant technique to add hybrid properties in backbone of polymers. The grafting generally initiated through the formation of free radical centers on the polymer backbone as well as monomer. Results: Grafted polysaccharides have various applications in different important scientific areas such as drug delivery, pharmaceutical field, plastic industry, waste water treatment, tannery effluent treatment, textile industry, agriculture area, etc. all of this fascinated us to summarize the major research articles over the last two decades outlining different methods of grafting, surface modification, graft copolymerization of synthetic and natural polymers. Conclusion: Various redox initiator systems viz. Ceric ammonium nitrate, per sulfate, Irradiation, FAS-H2O2 etc. is also explored for grafting of vinyl through conventional and non-conventional techniques.


Author(s):  
Iliane Muller Otto ◽  
Luiza Beatriz Gamboa Araújo Morselli ◽  
Dienifer Aline Braun Bunde ◽  
Simone Pieniz ◽  
Maurízio Silveira Quadro ◽  
...  

The textile industry, very important for the world economy, generates an effluent containing dyes, and which, when discarded in water bodies without proper treatment, can cause impacts to human health and the environment. One of these widely used dyes is methylene blue, whose characteristics are high solubility in water and its toxic potential, and which effects range from eye irritations, nausea, vomiting and even mental confusion. Among the potential adsorbents of this dye is chitin, which is a biopolymer extracted from the shrimp exoskeleton. Aiming at the development of a low-cost adsorbent material with potential use in the textile effluent treatment industry, the ability to remove methylene blue dye by shrimp residue chitin, obtained by eleven different methodologies, was verified. The three most efficient treatments reached approximately 75% of dye removal, proving the high adsorption power of shrimp residue. In addition to providing technological development of materials, the research brings socioeconomic benefits to the fishermen’s colony with the use of shrimp residue for the adsorption of other waste from the textile industry, contributing to the sustainability of both activities and reducing the environmental impact.


Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 318 ◽  
Author(s):  
Mohamed Loutou ◽  
Wafa Misrar ◽  
Mohammed Koudad ◽  
Mohammed Mansori ◽  
Liga Grase ◽  
...  

Ceramic membrane filters based on industrial by-products can be considered to be a valorization alternative of phosphate mine tailings, even more so if these ceramic membranes are used in the industrial wastewater treatment due to their good mechanical, chemical, and thermal resistance. The depollution of textile industry rejections with this method has not been studied in detail previously. In this work, ceramic membrane filters have been manufactured from natural clay and phosphate mine tailings (phosphate sludge). Blends of the abovementioned materials with a pore-forming agent (sawdust, up to 20 wt. %) were investigated in the range 900–1100 °C using thermal analysis, X-ray diffraction, scanning electron microscopy, and mercury porosimetry. Ceramic properties were measured as a function of firing temperature and sawdust addition. Filtration tests were carried out on samples with advantageous properties. The results showed that gehlenite together with diopside neoformed from lime decomposed carbonates and breakdown products of clay minerals, while calcium phosphate derived from partial decomposition of fluorapatite. Both quartz and fluorapatite resisted heating. The results of the experimental design showed that the variations of physical properties versus processing factors were well described by the polynomial model. Filtration results are quite interesting, allowing these membranes to be used in industrial effluent treatment.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 676
Author(s):  
Jillin Ai Lam Soo ◽  
Muaz Mohd Zaini Makhtar ◽  
Noor Fazliani Shoparwe ◽  
Tunmise Ayode Otitoju ◽  
Mardawani Mohamad ◽  
...  

Textile industry effluent contains a high amount of toxic colorants. These dyes are carcinogenic and threats to the environment and living beings. In this study, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) was used as the based polymer for PIMs with bis-(2-ethylhexyl) phosphate (B2EHP) and dioctyl phthalate (DOP) as the carrier and plasticizer. The fabricated PIMs were employed to extract the cation dye (Malachite Green; MG) from the feeding phase. PIMs were also characterized by scanning electron microscopy (SEM), atomic force microscope (AFM), contact angle, water uptake, Fourier-transform infrared spectroscopy (FTIR) and ions exchange capacity. The performance of the PIMs was investigated under various conditions such as percentage of carrier and initial dye concentration. With permeability and flux values of 0.1188 cm/min and 1.1913 mg cm/min, PIM produced with 18% w/w PVDF-co-HFP, 21% w/w B2EHP, 1% w/w DOP and 40% w/w THF and was able to achieve more than 97% of MG extraction. The experimental data were then fitted with a pseudo-second-order (PSO) model, and the calculated R2 value was ~0.99. This shows that the data has a good fit with the PSO model. PIM is a potential alternative technology in textile industry effluent treatment; however, the right formulation is crucial for developing a highly efficient membrane.


2016 ◽  
Vol 8 (2) ◽  
pp. 25-31 ◽  
Author(s):  
MRH Sarker ◽  
A Razzaque ◽  
MM Hoque ◽  
S Roy ◽  
MK Hossain

Textile industries are the major contributor to environmental pollution and health hazards by generating huge amount of effluents that contain several pollutants and coloring agents. The concentration of these pollutants can be reduced to the permissible limit with the help of an Effluent Treatment Plant (ETP). The study was conducted to observe the textile effluent management techniques of an Effluent Treatment Plant (ETP) of Fakir Knitwear Limited (FKL), Narayanganj, Bangladesh. FKL set up a biological treatment plant to treat the effluent generated by the industry. Different effluent quality parameters were investigated at different stages in ETP. The effluent of the outlet was dark colored probably because of soluble coloring materials of the effluent but it is comparatively better than that of raw wastewater. There were found higher EC values than the standards which indicated that the greater amount of salts in the water due to dumping of solid wastes and discharging of industrial effluents. The highest TDS value 2054 ppm was observed at the screening pit unit than the other parts of the ETP. The highest DO was found 4.58 ppm in clarification tank which was within the standard value of aquaculture. The study also showed that the lowest BOD (24 ppm) and COD (145 ppm) was found at the outlet which was comparatively better than others. Although the effluent from the outlet contained pollutants, these effluent quality was comparatively good than the untreated waste water discharged from the industry. After treatment, the effluent of outlet moderately ensures the standard quality for aquaculture and irrigation. The results suggested that it is obvious to run the ETP regularly to improve the quality of effluents to save our native environment from the harmful effects of wastewater.J. Environ. Sci. & Natural Resources, 8(2): 25-31 2015


2018 ◽  
Vol 13 (2) ◽  
pp. 206-214 ◽  
Author(s):  
M. Ahasanur Rabbi ◽  
Jewel Hossen ◽  
Md. Mirja Sarwar ◽  
Pijush Kanti Roy ◽  
Sharmin Binte Shaheed ◽  
...  

Textile manufacturing sector is the strongest root of the economy of Bangladesh while pollution by inappropriate management of waste water from textile dyeing industries is one of the major environmental problems. Textile processing employs an assortment of chemicals, contingent upon the idea of the crude materials and items. Environmental problems caused by the the textile industry are mainly the discharges of waste water. The wellspring of waste water contamination are the wet handling steps which incorporate measuring, desizing, scouring, bleaching, mercerizing, coloring, printing etc. The present study was aimed at physico-chemical evaluation of waste water discharged by some garments industries. While in some waste water high pH values have been recorded, the pH values of the waste water before and after treatments were found in between the standard range. The Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Dissolved Solid (TDS) and Total Suspended Solid (TSS) values for waste water before treatment were found to be much higher than the permissible limits. For some industries the BOD, COD, TDS and TSS values of the outlet water from effluent treatment plant (ETP) were also found beyond the standard limits.


2019 ◽  
Vol 70 (06) ◽  
pp. 502-511 ◽  
Author(s):  
MUHAMMAD TUSIEF QAMAR ◽  
HUSSAN MALIK MUMTAZ ◽  
MUHAMMAD MOHSIN ◽  
HAFIZ NAEEM ASGHAR ◽  
MUHAMMAD IQBAL ◽  
...  

Treatment of textile wastewater prior to its discharge into the environment is a highly concerned issue of the industry. The current established methods in textile industry for effluent treatment are typically high in cost, require range of chemicals along with the generation of concentrated hazardous sludge. It is therefore inevitable to look for economical and eco-friendly ways to treat textile wastewater. Hence, the present study was endeavored to develop green, chemical free and sustainable bacteria inoculated plant based technique for remedying textile bleaching effluents. A lab scale floating treatment wetlands (FTWs) system was developed and implemented for remediation of H2O2 based textile bleaching wastewater. This system was designed by vegetating two free floating aquatic plants Eichhorniacrassipes and Pistia stratiotes. The performance of this system was enhanced by inoculating two pollutant degrading and plant growth promoting bacteria, Bacillus cereus and Bacillus subtilis. The efficacy of this bacterial augmented FTWs system was assessed by monitoring physicochemical parameters of treated wastewater. A substantial decrease in pH, EC, TDS, TSS, BOD and COD was noted. This stamped the effectiveness of this sustainable technique to treat textile effluents.


Sign in / Sign up

Export Citation Format

Share Document