floating treatment wetlands
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 63)

H-INDEX

20
(FIVE YEARS 7)

2021 ◽  
Vol 5 (6) ◽  
pp. 317-325
Author(s):  
Mattias Oddsson ◽  
Emily Deering ◽  
Ren Ortega ◽  
Joe Magner

Constructed floating treatment wetlands (FTWs) are a best management practice (BMP) applied in aquatic environments to improve water quality by mitigating nutrient pollution. We evaluated the efficacy of FTWs in Minnesota, USA as a tool for the removal of excess nutrients in surface water to enhance water quality. We began with a 2015 outdoor mesocosm study to quantify the removal efficiency of total phosphorus (TP), ortho-phosphate-P (PO4-P), nitrate-N, and ammonia-N. The FTWs were each planted with wetland plants Juncus effusus, Eleocharis acicularis, and Glyceria canadensis. A paired controlled TP budget was prepared to identify mesocosm sources and sinks. Mesocosm FTWs showed higher PO4-P reduction efficiencies than the control mesocosms. Mesocosms with FTWs had significantly lower pH and dissolved oxygen (DO) concentrations. Water quality measurements were made along with qualitative observations, such as durability, at two different field scales where FTWs were installed in a pond and lake in 2016. Field deployed FTWs showed measurable changes in several water quality parameters over the study period. Statistically significant reductions were observed in PO4-P, DO, and pH for the pond site but not at the lake site. Though positive results were observed, factors other than FTWs may better explain the field deployed FTW results. Overall, the high FTW spatial coverage (15%) in the mesocosms showed clear PO4-P removal, whereas low FTW spatial coverage (<1%) of the field scale surface water was likely the most limiting factor to achieving optimal water quality at the study sites and rather than individual FTW performance.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2882
Author(s):  
Khadeeja Rehman ◽  
Muhammad Arslan ◽  
Jochen A. Müller ◽  
Muhammad Saeed ◽  
Asma Imran ◽  
...  

Floating treatment wetlands (FTWs) are cost-effective systems for the remediation of polluted water. In FTWs, the metabolic activity of microorganisms associated with plants is fundamental to treatment efficiency. Bioaugmentation, the addition of microorganisms with pollutant-degrading capabilities, appears to be a promising means to enhance the treatment efficiency of FTWs. Here, we quantified the effect of bioaugmentation with a four-membered bacterial consortium on the remediation of water contaminated with crude oil in pilot-scale FTWs planted with Phragmites australis or Typha domingensis. The bacteria had been isolated from the endosphere and rhizosphere of various plants and carry the alkane hydroxylase gene, alkB, involved in aerobic hydrocarbon degradation. During a treatment period of 36 days, FTWs planted with P. australis achieved a reduction in hydrocarbon concentration from 300 mg/L to 16 mg/L with and 56 mg/L without bioaugmentation. In the FTWs planted with T. domingensis, respective hydrocarbon concentrations were 46 mg/L and 84 mg/L. The inoculated bacteria proliferated in the rhizoplane and in the plant interior. Copy numbers of the alkB gene and its mRNA increased over time in plant-associated samples, suggesting increased bacterial hydrocarbon degradation. The results show that bioaugmentation improved the treatment of oil-contaminated water in FTWs by at least a factor of two, indicating that the performance of full-scale systems can be improved at only small costs.


Sign in / Sign up

Export Citation Format

Share Document