Kinetics of photocatalytic oxidation of phenol on TiO2 surface

1992 ◽  
Vol 69 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Tsong-Yang Wei ◽  
Chi-chao Wan
2016 ◽  
Vol 31 (3) ◽  
pp. 68-75
Author(s):  
F.F. Orudzhev ◽  
◽  
A.B. Isayev ◽  
F.G. Gasanova ◽  
N.S. Shabanov ◽  
...  

2013 ◽  
Vol 12 (3) ◽  
pp. 239-247

The removal of heavy metals from wastewaters is a matter of paramount importance due to the fact that their high toxicity causes major environmental pollution problems. One of the most efficient, applicable and low cost methods for the removal of toxic metals from aqueous solutions is that of their adsorption on an inorganic adsorbent. In order to achieve high efficiency, it is important to understand the influence of the solution parameters on the extent of the adsorption, as well as the kinetics of the adsorption. In the present work, the adsorption of Cu(II) species onto TiO2 surface was studied. It was found that the adsorption is a rapid process and it is not affected by the value of ionic strength. In addition, it was found that by increasing the pH, the adsorbed amount of Cu2+ ions and the value of the adsorption constant increase, whereas the value of the lateral interaction energy decreases.


2011 ◽  
Vol 106 (3-4) ◽  
pp. 559-564 ◽  
Author(s):  
Songmei Sun ◽  
Wenzhong Wang ◽  
Jiehui Xu ◽  
Lu Wang ◽  
Zhijie Zhang

2005 ◽  
Vol 7 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Ignazio Renato Bellobono ◽  
Franca Morazzoni ◽  
Riccardo Bianchi ◽  
Emilia Simona Mangone ◽  
Rodica Stanescu ◽  
...  

Kinetics of photocatalytic oxidation of methane, ethane,n-heptane,n-decane, andn-dodecane, to yield intermediates, and photomineralisation of intermediates, to yield carbon dioxide and water, was studied in aqueous solution, by a laboratory-scale photoreactor and photocatalytic membranes immobilizing30±3wt.% ofTiO2, in the presence of stoichiometric hydrogen peroxide as oxygen donor. The whole volume of irradiated solution was4.000±0.005L, the ratio between this volume and the geometrical apparent surface of the irradiated side of the photocatalytic membrane was3.8±0.1cm, and the absorbed power 0.30W/cm (cylindrical geometry). A kinetic model was used, by which mineralisation of substrate toCO2was supposed to occur, by kinetic constantsk1, through one single intermediate, mediating the behaviour of all the numerous real intermediates formed in the path from the substrate toCO2(kinetic constants of formation of the latter beingk2). A competitive Langmuirian adsorption of both substrate and “intermediate” was also supposed to be operative, as expressed by apparent adsorption constantsk1andk2, possessing a, partly at least, kinetic significance. By Langmuir-Hinshelwood treatment of initial rate data, starting values of thekandKcouples were obtained, from which, by a set of differential equations, the final optimised parameters,k1andk1,k2andK2, were calculated, able fit the whole photomineralisation curve, and not only its initial segment, as the Langmuirian parameters do. The parameters of present work are critically compared with those obtained in two preceding set of studies relative ton-alkanoic acids and ton-alkanols. They are interpreted on the basis of a closer behaviour of hydrocarbons to alkanols, from the photocatalytic point of view, than to carboxylic acids are. Discussion of limiting effective quantum yields, and their comparison with maximum, theoretical values, are also carried out.


2007 ◽  
Vol 50 (3) ◽  
pp. 379-384 ◽  
Author(s):  
WenXing Chen ◽  
ShiLiang Chen ◽  
ShenShui Lü ◽  
YuYuan Yao ◽  
MinHong Xu

Sign in / Sign up

Export Citation Format

Share Document