Factors Affecting the Formation and Actions of Cyclic AMP in Blood Platelets

Author(s):  
R.J. Haslam ◽  
M.M.L. Davidson ◽  
J.V. Desjardins ◽  
J.E.B. Fox ◽  
J.A. Lynham
Abstracts ◽  
1978 ◽  
pp. 522
Author(s):  
R.J. Haslam ◽  
M.M.L. Davidson ◽  
J.V. Desjardins ◽  
J.E.B. Fox ◽  
J.A. Lynham

1978 ◽  
Vol 39 (01) ◽  
pp. 177-185 ◽  
Author(s):  
Shuichi Hashimoto ◽  
Sachiko Shibata ◽  
Bonro Kobayashi

SummaryThe effect of Mitomycin C on aggregation, adenosine 3′, 5′-monophosphate (cyclic AMP) metabolism and reactions induced by thrombin was studied in rabbit platelets. Mitomycin C inhibited the platelet aggregation induced by adenosine diphosphate or thrombin. The level of radioactive cyclic AMP derived from 8-14C adenine or 8-14C adenosine increased after incubating intact platelets with Mitomycin G. Formation of radioactive adenosine triphosphate also increased though mitochondrial oxidation was not stimulated. Similar effect was observed also in rabbit liver. Mitomycin C failed to stimulate platelet adenyl cyclase but inhibited cyclic AMP phosphodiesterase in the absence of theophylline. In the platelets preincubated with Mitomycin C, thrombin-induced inhibition of adenyl cyclase, stimulation of membrane-bound cyclic AMP phosphodiesterase, and release of 250,000 dalton protein from platelet membranes were prevented. These results suggest that Mitomycin C will affect cellular membrane structure and function, and this extranuclear effect of Mitomycin C will lead to inhibition of aggregation in blood platelets.


1974 ◽  
Vol 60 (2) ◽  
pp. 325-336 ◽  
Author(s):  
Marjorie B. Zucker ◽  
Walter Troll ◽  
Sidney Belman

The phorbol ester 12-0-tetradecanoyl-phorbol-13-acetate, a potent tumor-promoting agent, caused irreversible platelet aggregation when more than 0.02 µM was stirred with human citrated or heparinized platelet-rich plasma (PRP). With washed platelets, 1 nM was effective. The alcohol phorbol, which has little tumor-promoting activity, failed to cause platelet aggregation. With all but low concentrations of phorbol ester, aggregation was succeeded by a rapid phase. The latter was prevented or reduced by enzymes which destroy ADP and by aspirin, was associated with a change in platelet shape, and was presumably due to released ADP. At higher concentrations, only a rapid phase was seen, and these inhibitors were not effective. Low concentrations did not aggregate platelets in PRP containing sufficient EDTA or EGTA to chelate ionized calcium or in PRP from thrombasthenic patients; higher concentrations caused slight aggregation. Both the primary, non-ADP-dependent aggregation and the rapid ADP-dependent aggregation were markedly inhibited by substances which increase cyclic AMP, metabolic inhibitors, and the sulfhydryl inhibitor N-ethylmaleimide. Phorbol ester reduced platelet cyclic AMP only when it had been previously elevated by prostaglandin E1. 1 µM did not release ß-glucuronidase, lactic dehydrogenase, or inflammatory material from platelets in 4–5 min despite marked aggregation, but liberated all three in 30 min. The possibility is discussed that low phorbol ester concentrations cause primary aggregation by a direct action on platelet actomyosin.


1974 ◽  
Vol 18 (6) ◽  
pp. 509-515 ◽  
Author(s):  
G. Chader ◽  
R. Fletcher ◽  
M. Johnson ◽  
R. Bensinger

1977 ◽  
Vol 161 (3) ◽  
pp. 653-665 ◽  
Author(s):  
S O Døskeland ◽  
P M Ueland ◽  
H J Haga

Inorganic salts, several proteins and traces of protein precipitants were tested to find out by what mechanisms they modulate the binding of cyclic [3H]AMP to protein kinase (ATP-protein phosphotransferase; EC 2.7.1.37). The separation of free and bound cyclic AMP by (NH4)2SO4 precipitation was unaffected by the above agents and was more reliable than the Millipore filtration technique. Several binding sites for cyclic AMP were revealed in adrenal-cortex extract. When this extract was used as binding reagent in an assay for cyclic AMP, the standard curve was distorted in the presence of KCl because the salt affected the different binding sites to a varying extent. At high ionic strenth the protein kinase isoenzyme I dissociated and showed an extraordinarily high affinity for cyclic AMP. Trichloroacetate and perchlorate at very low concentrations were able to dissociate the protein kinase and modulate its binding characteristics as well. A progressive decrease in the cyclic AMP-binding capacity occurred on prolonged incubations. The binding protein was protected against inactivation by 2-mercaptoethanol, EDTA and several proteins. It was more resistant to denaturation when complexed to cyclic AMP. The enhancement of cyclic AMP binding by bovine serum albumin was investigated in some detail and appeared to be a pure stabilizing effect. It is proposed that the competitive-binding assays for cyclic AMP based on protein kinase be conducted at high ionic strength and in the presence of stabilizers (protein, EDTA, 2-mercaptoethanol). The interference from agents that may dissociate the protein kinase or influence its stability will thus be decreased.


1982 ◽  
Vol 719 (2) ◽  
pp. 208-214 ◽  
Author(s):  
Donald A. Chambers ◽  
Ralph L. Nachman ◽  
Joan Evarts ◽  
Todatoshi Kinoshita

1979 ◽  
Vol 178 (2) ◽  
pp. 397-406 ◽  
Author(s):  
Richard J. Haslam ◽  
James A. Lynham ◽  
Joan E. B. Fox

Human platelets that had been preincubated with 5-hydroxy[3H]tryptamine and [32P]Pi were stirred with various agents; the secretion of 5-hydroxy[3H]tryptamine from platelet granules and the radioactivity of platelet [32P]phosphopolypeptides separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis were then measured. Exposure of the platelets to collagen fibres or ionophore A23187 selectively increased the phosphorylation of polypeptides with apparent mol.wts. of 47000 (P47) and 20000 (P20) by approx. 3-fold, in association with the release of 5-hydroxy[3H]tryptamine. The 47000-mol.wt. phosphopolypeptide (P47) was clearly separated from platelet actin by the electrophoresis system used. Prostaglandin E1, which inhibits platelet function by increasing platelet cyclic AMP, decreased the phosphorylation of polypeptides caused by collagen as well as the release of 5-hydroxy[3H]tryptamine. Prostaglandin E1 also selectively increased the phosphorylation of distinct polypeptides with apparent mol.wts. of 24000 (P24) and 22000 (P22) by approx. 2-fold. As the phosphorylation reactions caused by collagen are probably mediated by an increase in Ca2+ concentration in the platelet cytosol and may have a role in the release reaction [Haslam & Lynham (1977) Biochem. Biophys. Res. Commun.77, 714–722; (1978) Thromb. Res.12, 619–628], we suggest that a cyclic AMP-dependent phosphorylation of the 24000- and/or 22000-mol.wt. polypeptides caused by prostaglandin E1 may initiate processes that decrease the Ca2+ concentration in the cytosol, so inhibiting both the Ca2+-dependent phosphorylation reactions and the release reaction. Treatment of platelets with prostaglandin E1 did not inhibit the increased phosphorylation of polypeptides with apparent mol.wts. of 47000 and 20000 (P47 and P20) caused by ionophore A23187, which may therefore short-circuit cyclic AMP-dependent mechanisms that decrease the Ca2+ concentration in the platelet cytosol. As prostaglandin E1 did inhibit the release of 5-hydroxy[3H]tryptamine by ionophore A23187, cyclic AMP may also inhibit the release reaction by additional mechanisms.


1978 ◽  
Vol 174 (1) ◽  
pp. 23-35 ◽  
Author(s):  
A F Adams ◽  
R J Haslam

1. Under optimal ionic conditions (4 mM-MnCl2) the specific activity of guanylate cyclase in fresh platelet lysates was about 10nmol of cyclic GMP formed/20 min per mg of protein at 30 degrees C. Activity was 15% of optimum with 10mM-MgCl2 and negligible with 4mM-CaCl2. Synergism between MnCl2 and MgCl2 or CaCl2 was observed when [MnCl2] less than or equal to [GPT]. 2. Lower than optimal specific activities were obtained in assays containing large volumes of platelet lysate, owing to the presence of inhibitory factors that could be removed by ultrafiltration. Adenine nucleotides accounted for less than 50% of the inhibitory activity. 3. Preincubation of lysate for 1 h at 30 degrees C increased the specific activity of platelet guanylate cyclase by about 2-fold. 4. Lubrol PX (1%, w/v) stimulated guanylate cyclase activity by 3–5-fold before preincubation and by about 2-fold after preincubation. Triton X-100 was much less effective. 5. Dithiothreitol inhibited the guanylate cyclase activity of untreated, preincubated and Lubrol PX-treated lysates and prevented activation by preincubation provided that it was added beforehand. 6. Oleate stimulated guanylate cyclase activity 3–4-fold and arachidonate 2–3-fold, whereas palmitate was almost inactive. Pretreatment of lysate with indomethacin did not inhibit this effect of arachidonate. Oleate and arachidonate caused marked stimulation of guanylate cyclase in preincubated lysate, but inhibited the enzyme in Lubrol PX-treated lysate. 7. NaN3 (10mM) increased guanylate cyclase activity by up to 7-fold; this effect was both time- and temperature-dependent. NaN3 did not further activate the enzyme in Lubrol PX-treated lysate. 8. The results indicated that preincubation, Lubrol PX, fatty acids and NaN3 activated platelet guanylate cyclase by different mechanisms. 9. Platelet particulate fractions contained no guanylate cyclase activity detectable in the presence or absence of Lubrol PX that could not be accounted for by contaminating soluble enzyme, suggesting that physiological aggregating agents may increase cyclic GMP in intact platelets through the effects of intermediary factors. The activated and inhibited states of the enzyme described in the present paper may be relevant to the actions of these factors.


Sign in / Sign up

Export Citation Format

Share Document