DESIGN AND OPTIMIZATION OF SOLAR INDUSTRIAL PROCESS HEAT PLANTS

Author(s):  
M. Collares-Pereira ◽  
J.M. Gordon ◽  
A. Rabl ◽  
Y. Zarmi
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2146
Author(s):  
Karunesh Kant ◽  
Karthik Nithyanandam ◽  
Ranga Pitchumani

This paper analyzes a novel, cost-effective planar waveguide solar concentrator design that is inspired by cellular hexagonal structures in nature with the benefits of facile installation and low operation and maintenance cost. A coupled thermal and optical analysis of solar irradiation through an ideal hexagonal waveguide concentrator integrated with a linear receiver is presented, along with a cost analysis methodology, to establish the upper limit of performance. The techno-economic model, coupled with numerical optimization, is used to determine designs that maximized power density and minimized the cost of heat in the temperature range of 100–250 °C, which constitutes more than half of the industrial process heat demand. Depending on the incident solar irradiation and the application temperature, the cost of heat for the optimal design configuration ranged between 0.1–0.27 $/W and 0.075–0.18 $/W for waveguide made of ZK7 glass and polycarbonate, respectively. A techno-economic analysis showed the potential of the technology to achieve cost as low as 80 $/m2 and 61 $/m2 for waveguide made of ZK7 glass and polycarbonate material, respectively, which is less than half the cost of state-of-the-art parabolic trough concentrators. Overall, the hexagonal waveguide solar concentrator technology shows immense potential for decarbonizing the industrial process heat and thermal desalination sectors.


2020 ◽  
Vol 43 (8) ◽  
pp. 1469-1484 ◽  
Author(s):  
Volker Lenz ◽  
Nora Szarka ◽  
Matthias Jordan ◽  
Daniela Thrän

Sign in / Sign up

Export Citation Format

Share Document