scholarly journals SOLAR WIND THERMAL ELECTRON DISTRIBUTIONS

1992 ◽  
pp. 527-532 ◽  
Author(s):  
J.L. Phillips ◽  
J.T. Gosling
1989 ◽  
Vol 94 (A6) ◽  
pp. 6563-6579 ◽  
Author(s):  
J. L. Phillips ◽  
J. T. Gosling ◽  
D. J. McComas ◽  
S. J. Bame ◽  
S. P. Gary ◽  
...  

2017 ◽  
Vol 35 (6) ◽  
pp. 1275-1291 ◽  
Author(s):  
Allan R. Macneil ◽  
Christopher J. Owen ◽  
Robert T. Wicks

Abstract. The development of knowledge of how the coronal origin of the solar wind affects its in situ properties is one of the keys to understanding the relationship between the Sun and the heliosphere. In this paper, we analyse ACE/SWICS and WIND/3DP data spanning  > 12 years, and test properties of solar wind suprathermal electron distributions for the presence of signatures of the coronal temperature at their origin which may remain at 1 AU. In particular we re-examine a previous suggestion that these properties correlate with the oxygen charge state ratio O7+ ∕ O6+, an established proxy for coronal electron temperature. We find only a very weak but variable correlation between measures of suprathermal electron energy content and O7+ ∕ O6+. The weak nature of the correlation leads us to conclude, in contrast to earlier results, that an initial relationship with core electron temperature has the possibility to exist in the corona, but that in most cases no strong signatures remain in the suprathermal electron distributions at 1 AU. It cannot yet be confirmed whether this is due to the effects of coronal conditions on the establishment of this relationship or due to the altering of the electron distributions by processing during transport in the solar wind en route to 1 AU. Contrasting results for the halo and strahl population favours the latter interpretation. Confirmation of this will be possible using Solar Orbiter data (cruise and nominal mission phase) to test whether the weakness of the relationship persists over a range of heliocentric distances. If the correlation is found to strengthen when closer to the Sun, then this would indicate an initial relationship which is being degraded, perhaps by wave–particle interactions, en route to the observer.


2021 ◽  
Author(s):  
Haimeng Li ◽  
Wen Li ◽  
Qianli Ma ◽  
Yukitoshi Nishimura ◽  
Zhigang Yuan ◽  
...  

Abstract. We report an attenuation of hiss wave intensity in the duskside of outer plasmasphere in response to enhanced convection and substorm based on Van Allen Probes observations. Using test particle codes, we simulate the dynamics of energetic electron fluxes based on a realistic magnetospheric electric field model driven by solar wind and subauroral polarization stream. We suggest that the enhanced magnetospheric electric field causes the outward and sunward motion of energetic electrons, corresponding to the decrease of energetic electron fluxes on the duskside, leading to the subsequent attenuation of hiss wave intensity. The results indicate that the enhanced electric field can significantly change the energetic electron distributions, which provide free energy for hiss wave amplification. This new finding is critical for understanding the generation of plasmaspheric hiss and its response to solar wind and substorm activity.


2008 ◽  
Vol 26 (11) ◽  
pp. 3511-3524 ◽  
Author(s):  
E. M. Dubinin ◽  
M. Fraenz ◽  
J. Woch ◽  
E. Roussos ◽  
J. D. Winningham ◽  
...  

Abstract. Electrons with energy of ~40–80 eV measured by the instrument ASPERA-3 on Mars Express and MAG-ER onboard Mars Global Surveyor are used to trace an access of solar wind electrons into the Martian magnetosphere. Crustal magnetic fields create an additional protection from solar wind plasma on the dayside of the Southern Hemisphere by shifting the boundary of the induced magnetosphere (this boundary is often refereed as the magnetic pileup boundary) above strong crustal sources to ~400 km as compared to the Northern Hemisphere. Localized intrusions through cusps are also observed. On the nightside an access into the magnetosphere depends on the IMF orientation. Negative values of the ByIMF component assist the access to the regions with strong crustal magnetizations although electron fluxes are strongly weakened below ~600 km. A precipitation pattern at lower altitudes is formed by intermittent regions with reduced and enhanced electron fluxes. The precipitation sites are longitudinally stretched narrow bands in the regions with a strong vertical component of the crustal field. Fluxes ≥109 cm−2 s−1 of suprathermal electrons necessary to explain the observed aurora emissions are maintained only for the periods with enhanced precipitation. The appearance of another class of electron distributions – inverted V structures, characterized by peaks on energy spectra, is controlled by the IMF. They are clustered in the hemisphere pointed by the interplanetary electric field that implies a constraint on their origin.


Sign in / Sign up

Export Citation Format

Share Document