Radial evolution of solar wind thermal electron distributions due to expansion and collisions

1990 ◽  
Vol 95 (A4) ◽  
pp. 4217 ◽  
Author(s):  
J. L. Phillips ◽  
J. T. Gosling
1989 ◽  
Vol 94 (A6) ◽  
pp. 6563-6579 ◽  
Author(s):  
J. L. Phillips ◽  
J. T. Gosling ◽  
D. J. McComas ◽  
S. J. Bame ◽  
S. P. Gary ◽  
...  

2012 ◽  
Author(s):  
S. L. McGregor ◽  
W. J. Hughes ◽  
C. N. Arge ◽  
D. Odstreil ◽  
N. A. Schwadron

2017 ◽  
Vol 35 (6) ◽  
pp. 1275-1291 ◽  
Author(s):  
Allan R. Macneil ◽  
Christopher J. Owen ◽  
Robert T. Wicks

Abstract. The development of knowledge of how the coronal origin of the solar wind affects its in situ properties is one of the keys to understanding the relationship between the Sun and the heliosphere. In this paper, we analyse ACE/SWICS and WIND/3DP data spanning  > 12 years, and test properties of solar wind suprathermal electron distributions for the presence of signatures of the coronal temperature at their origin which may remain at 1 AU. In particular we re-examine a previous suggestion that these properties correlate with the oxygen charge state ratio O7+ ∕ O6+, an established proxy for coronal electron temperature. We find only a very weak but variable correlation between measures of suprathermal electron energy content and O7+ ∕ O6+. The weak nature of the correlation leads us to conclude, in contrast to earlier results, that an initial relationship with core electron temperature has the possibility to exist in the corona, but that in most cases no strong signatures remain in the suprathermal electron distributions at 1 AU. It cannot yet be confirmed whether this is due to the effects of coronal conditions on the establishment of this relationship or due to the altering of the electron distributions by processing during transport in the solar wind en route to 1 AU. Contrasting results for the halo and strahl population favours the latter interpretation. Confirmation of this will be possible using Solar Orbiter data (cruise and nominal mission phase) to test whether the weakness of the relationship persists over a range of heliocentric distances. If the correlation is found to strengthen when closer to the Sun, then this would indicate an initial relationship which is being degraded, perhaps by wave–particle interactions, en route to the observer.


2006 ◽  
Vol 122 (1-4) ◽  
pp. 321-328 ◽  
Author(s):  
Roberto Bruno ◽  
Bruno Bavassano ◽  
Raffaella D’amicis ◽  
Vincenzo Carbone ◽  
Luca Sorriso-Valvo ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Seong-Yeop Jeong ◽  
Daniel Verscharen ◽  
Vocks Christian ◽  
Christopher Owen ◽  
Robert Wicks ◽  
...  

<p>The electrons in the solar wind exhibit an interesting kinetic substructure with many important implications for the overall energetics of the plasma in the heliosphere. We are especially interested in the formation and evolution of the electron strahl, a field-aligned beam of superthermal electrons, in the heliosphere. We develop a kinetic transport equation for typical heliospheric conditions based on a Parker-spiral geometry of the magnetic field. We present the results of our theoretical model for the radial evolution of the electron velocity distribution function (VDF) in the solar wind. We study the effects of the adiabatic focusing of energetic electrons, wave-particle interactions, and Coulomb collisions through a generalized kinetic equation for the electron VDF. We compare and contrast our results with the observed effects in the electron VDFs from space missions that explore the radial evolution of electrons in the inner heliosphere such as Helios, Parker Solar Probe, and Solar Orbiter.</p>


2021 ◽  
Author(s):  
Daniele Telloni ◽  

<p>Radial alignments between pairs of spacecraft is the only way to observationally investigate the turbulent evolution of the solar wind as it expands throughout interplanetary space. On September 2020 Parker Solar Probe (PSP) and Solar Orbiter (SolO) were nearly perfectly radially aligned, with PSP orbiting around its perihelion at 0.1 au (and crossing the nominal Alfvén point) and SolO at 1 au. PSP/SolO joint observations of the same solar wind plasma allow the extraordinary and unprecedented opportunity to study how the turbulence properties of the solar wind evolve in the inner heliosphere over the wide distance of 0.9 au. The radial evolution of (i) the MHD properties (such as radial dependence of low- and high-frequency breaks, compressibility, Alfvénic content of the fluctuations), (ii) the polarization status, (iii) the presence of wave modes at kinetic scale as well as their distribution in the plasma instability-temperature anisotropy plane are just few instances of what can be addressed. Of furthest interest is the study of whether and how the cascade transfer and dissipation rates evolve with the solar distance, since this has great impact on the fundamental plasma physical processes related to the heating of the solar wind. In this talk I will present some of the results obtained by exploiting the PSP/SolO alignment data.</p>


2021 ◽  
Author(s):  
Anna Tenerani ◽  
Marco Velli ◽  
Lorenzo Matteini

<p>Alfvénic fluctuations represent the dominant contributions to turbulent fluctuations in the solar wind, especially, but not limited to, the fastest streams with velocity of the order of 600-700 km/s. Alfvénic fluctuations can contribute to solar wind heating and acceleration via wave pressure and turbulent heating. Observations show that such fluctuations are characterized by a nearly constant magnetic field amplitude, a condition which remains largely to be understood and that may be an indication of how fluctuations evolve and relax in the expanding solar wind. Interestingly, measurements from Parker Solar Probe have shown the ubiquitous and persistent presence of the so-called switchbacks. These are magnetic field lines which are strongly perturbed to the point that they produce local inversions of the radial magnetic field. The corresponding signature of switchbacks in the velocity field is that of local enhancements in the radial speed (or jets) that display the typical velocity-magnetic field correlation that characterizes Alfvén waves propagating away from the Sun. While there is not yet a general consensus on what is the origin of switchbacks and their connection to coronal activity, a first necessary step to answer these important questions is to understand how they evolve and how long they can persist in the solar wind. Here we investigate the evolution of switchbacks. We address how their evolution is affected by parametric instabilities and the possible role of expansion, by comparing models with the observed radial evolution of the fluctuations’ amplitude. We finally discuss what are the implications of our results for models of switchback generation and related open questions.</p>


2020 ◽  
Vol 494 (3) ◽  
pp. 3642-3655 ◽  
Author(s):  
Allan R Macneil ◽  
Mathew J Owens ◽  
Robert T Wicks ◽  
Mike Lockwood ◽  
Sarah N Bentley ◽  
...  

ABSTRACT Local inversions are often observed in the heliospheric magnetic field (HMF), but their origins and evolution are not yet fully understood. Parker Solar Probe has recently observed rapid, Alfvénic, HMF inversions in the inner heliosphere, known as ‘switchbacks’, which have been interpreted as the possible remnants of coronal jets. It has also been suggested that inverted HMF may be produced by near-Sun interchange reconnection; a key process in mechanisms proposed for slow solar wind release. These cases suggest that the source of inverted HMF is near the Sun, and it follows that these inversions would gradually decay and straighten as they propagate out through the heliosphere. Alternatively, HMF inversions could form during solar wind transit, through phenomena such velocity shears, draping over ejecta, or waves and turbulence. Such processes are expected to lead to a qualitatively radial evolution of inverted HMF structures. Using Helios measurements spanning 0.3–1 au, we examine the occurrence rate of inverted HMF, as well as other magnetic field morphologies, as a function of radial distance r, and find that it continually increases. This trend may be explained by inverted HMF observed between 0.3 and 1 au being primarily driven by one or more of the above in-transit processes, rather than created at the Sun. We make suggestions as to the relative importance of these different processes based on the evolution of the magnetic field properties associated with inverted HMF. We also explore alternative explanations outside of our suggested driving processes which may lead to the observed trend.


Sign in / Sign up

Export Citation Format

Share Document