Nuclear steam generator design

Author(s):  
J.C. Smith
Author(s):  
I. Giglmayr ◽  
J. Paul ◽  
W. Sanz

The introduction of closed cycle gas turbines with their capability of retaining combustion generated CO2 can offer a valuable contribution to the Kyoto goal and to future power generation. Therefore, research and development at Graz University of Technology has lead to the GRAZ CYCLE, a zero emission power cycle of highest efficiency. The GRAZ CYCLE is still on a theoretical level, first tests with the turbo-machinery equipment were performed. In the GRAZ CYCLE fossil fuels are burned with pure oxygen which enables a cost-effective separation of the combustion generated CO2 by condensation. Cycle efficiencies as high as 63% can be reached. Taking the efforts for the oxygen supply into account the efficiency is reduced to 55% [1]. This work presents a further step towards a GRAZ CYCLE prototype plant, with special emphasis on the layout and design of the heat recovery steam generator (HRSG). The hot exhaust gas of the turbine consists mainly of CO2 and H2O. This exhaust gas causes higher demands on the HRSG. A faster corrosion of the heat exchangers and the recirculation of the cycle fluid have to be considered. Based on the design of conventional HRSGs, the necessary adaptations are discussed and economically evaluated.


2020 ◽  
Vol 178 ◽  
pp. 01007
Author(s):  
Mikle Egorov ◽  
Ivan Kasatkin ◽  
Ivan Kovalenko ◽  
Irina Krectunova ◽  
Nataliya Lavrovskaya ◽  
...  

The main aim of the current study is to analyze advantages and shortcomings of horizontal and vertical types of steam generator design. Design solutions and experience of operation of steam generators of horizontal type accepted in Russia and of vertical type applied by Westinghouse, Combustion Engineering, Siemens, Mitsubishi, Doosan were analyzed within the framework of the present study. It was established that steam generator equipment of horizontal type is characterized by disadvantages of design, technological and operational nature. Thus, horizontal steam generators with dimensions permissible for railroad transportation and, for VVER-1200 with reactor vessel diameter equal to 5 m, by water transport as well, have exhausted the possibilities for further significant increase of the per unit electric power. The demonstrated advantages of vertical-type steam generators are as follows: 1) absence of stagnant zones within the second cooling circuit; 2) uniformity of heat absorption efficiency of the heating surface that ensures improved conditions for moisture separation; 3) increased temperature drop with parameters of generated steam elevated by 0.3 – 0.4 MPa. Conclusion was made on the advisability of introduction of steam generators with vertical-type layout in the Russian nuclear power generation.


Vestnik IGEU ◽  
2020 ◽  
pp. 5-15
Author(s):  
V.A. Gorbunov ◽  
N.A. Lonshakov ◽  
M.N. Mechtaeva

The issue of reducing steam humidity at the output of steam generator is relevant. The value of humidity directly affects the safety and efficiency of power plants. The optimization of steam generator design will enable to enhance its separation properties and reduce steam humidity. Creating a numerical model of wet steam separation process in a full-scale steam generator and its verification will allow proceeding to optimize the steam generator design and evaluate the model effectiveness. This article presents a preliminary study of the wet steam separation process in the steam space of PGV-1000M steam generator. To study the wet steam separation process in the steam space of PGV-1000M steam generator, a numerical model was developed in the ANSYS Fluent finite element analysis system. The following assumptions were made: the surface of the evaporation mirror is flat, drops have a spherical shape, they do not affect the movement of steam, they do not interact with each other, and there is no decay of the droplets. A three-dimensional model of the steam space of PGV-1000M steam generator which allows considering the processes of wet steam separation has been obtained. The analysis of the results has shown that the nature of the processes occurring in the model corresponds to theoretical calculations and operational data. The developed model has been verified and can be used to optimize the steam generator design. Further numerical studies of the developed model will enable to determine the most optimal design of the steam generator which provides the highest efficiency of steam separation. Moreover, it is possible and promising to study the effect of the evaporation mirror surface on the steam humidity in the steam generator. Decreasing the steam humidity at the steam generator output at existing and projected power plants will provide significant savings in funds spent on repairing the steam turbine blade apparatus, and will lead to an increase in the thermal efficiency of the plant.


2021 ◽  
Vol 1772 (1) ◽  
pp. 012035
Author(s):  
A S Ekariansyah ◽  
S Widodo ◽  
H Tjahjono ◽  
Susyadi ◽  
P I Wahyono ◽  
...  

Author(s):  
Moli Cao ◽  
Jennifer Nelson ◽  
Hasan Charkas ◽  
Timothy Wiger

One of the challenges in straight shell-and-tube Steam Generator design is to avoid the tube to tube wear that can arise during operation due to higher than anticipated compressive tube loads and the resulting tube bow that can occur. Tube bow becomes significant when the compressive load in the tube exceeds its critical buckling capacity. This excessive load does not lead to unstable collapse of the tube as the axial load in the tube is displacement controlled. However, it does lead to significant lateral deformation for a very small increase in axial load/displacement. In this paper, several factors are investigated to determine their influence on the onset of tube bowing. Based on the studies performed in this paper there are factors that play a significant role in the behavior of steam generator tubes that have not typically been addressed in associated design analyses. Failure to address these factors can lead to unexpected behavior, premature degradation of steam generator performance, and possibly pressure boundary failure. A thorough understanding of these factors is necessary to ensure that a given design will perform as expected.


Sign in / Sign up

Export Citation Format

Share Document