Use of bioactive glasses as bone substitutes in orthopedics and traumatology

2018 ◽  
pp. 337-364
Author(s):  
A.J. Salinas ◽  
M. Vallet-Regi ◽  
J. Heikkilä
2018 ◽  
Vol 4 (1) ◽  
pp. 108-122 ◽  
Author(s):  
Cédric Bossard ◽  
Henri Granel ◽  
Yohann Wittrant ◽  
Édouard Jallot ◽  
Jonathan Lao ◽  
...  

Abstract Bioactive glasses (BG) bond to bone and stimulate bone regeneration, but they are brittle. Inorganicorganic hybrids appear as promising bone substitutes since they associate the bone mineral forming ability of BG with the toughness of polymers. Hybrids comprised of polycaprolactone (PCL) and SiO2-CaO BG were produced by sol-gel chemistry and processed into porous scaffolds with controlled pore and interconnection sizes. The obtained scaffolds are highly flexible, meaning that PCL effectively introduces toughness. Apatite formation is observed within 24 hours of immersion in simulated body fluid (SBF) and is not limited to the surface as the entire hybrid progressively changes into bone-like minerals. The degradation rate is suitable for bone regeneration with a 13.2% weight loss after 8 weeks of immersion. Primary osteoblasts cultured in scaffolds demonstrate that the samples are not cytotoxic and provide good cell adhesion. The in vivo study confirms the bioactivity, biocompatibility and suitable degradation rate of the hybrid. A physiological bone made of trabeculae and bone marrow regenerates. The structure and kinetic of bone regeneration was similar to the implanted commercial standard based on bovine bone, demonstrating that this new synthetic PCL-BG hybrid could perform as well as animal-derived bone substitutes.


2014 ◽  
Vol 631 ◽  
pp. 25-29
Author(s):  
S.S. Seyedmomeni ◽  
M. Naeimi ◽  
Majid Raz ◽  
J. Aghazadeh Mohandesi ◽  
F. Moztarzadeh

Various kinds of bioactive materials are developed as bone substitutes. Bioactive materials may affect attachment, proliferation and differentiation of cells and the subsequent integration in a host tissue. In this research 21%CaO–5%P2O5–64%SiO2–5%ZnO-5%B2O3and 16%CaO–5%P2O5–64%SiO2–5%ZnO-10%B2O3bioactive glasses were successfully synthesized by the sol–gel technique. Then the prepared bioactive glasses were soaked into simulated body fluid. Then the prepared samples were characterized using X-ray diffraction (XRD) and Scanning electron microscopy (SEM). It was seen that addition of boron to the structure remarkably enhances the formation of hydroxyapatite on the surface of the bioactive glass and subsequently improves the bioactivity. The obtained results from SEM and XRD were in good agreement with each other. Besides, effect of boron on atomic arrangement of the prepared bioactive glass was studies and compared with previous researches. It was shown that by increasing the boron content, more crystalline domains would be observed.


2017 ◽  
Vol 758 ◽  
pp. 245-249
Author(s):  
Olivera Lupescu ◽  
Mihail Nagea ◽  
Alexandru Dimitriu ◽  
Iulian Vasile Antoniac

Bone infections are challenging due to their difficult and prolonged treatment, considerable possibility of relapse and strong negative physical and emotional impact. Since their treatment require thorough excisions, bone substitutes have been studied for restoring bone continuity, but with limited efficacy due to the pathophysiology of bone infections; one of the classes which proved to be efficient were the BioActive Glasses [BAG], synthetic biocompatible inorganic materials with a controlled ionic release, with demonstrated properties of wound healing, osteoconduction, angiogenesis and antibacterial activity. This paper presents the clinical experience from a Level 1 Trauma Centre where post-traumatic osteitis was treated using BioActive Glasses as bone fillers, demonstrating the potential clinical impact of these materials. The outcome of the patients was favourable, with no relapse of sepsis, therefore proving the efficacy of BAG in cases with limited grafting possibilities


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Vlad M. Anghelescu ◽  
Ioana Neculae ◽  
Octavian Dincă ◽  
Cristian Vlădan ◽  
Claudiu Socoliuc ◽  
...  

Introduction. The clinical use of bioactive materials for bone augmentation has remained a challenge because of predictability and effectiveness concerns, as well as increased costs. The purpose of this study was to analyse the ability to integrate bone substitutes by evaluating the immunohistochemical expression of the platelet endothelial cell adhesion molecules, vascular endothelial growth factor, collagen IV, laminin, and osteonectin, in the vicinity of bone grafts, enabling tissue revascularization and appearance of bone lamellae. There is a lack of in vivo studies of inflammatory-driven angiogenesis in bone engineering using various grafts. Methods. The study was performed in animal experimental model on the standardized monocortical defects in the tibia of 20 New Zealand rabbits. The defects were augmented with three types of bone substituents. The used bone substituents were beta-tricalcium phosphate, bovine hydroxyapatite, and bioactive glasses. After a period of 6 months, bone fragments were harvested for histopathologic examination. Endothelial cell analysis was done by analysing vascularization with PECAM/CD31 and VEGF and fibrosis with collagen IV, laminin, and osteonectin stains. Statistical analysis was realized by descriptive analysis which was completed with the kurtosis and skewness as well as the Kruskal-Wallis and Mann-Whitney statistical tests. Results. The discoveries show that the amount of bone that is formed around beta-tricalcium phosphate and bovine hydroxyapatite is clearly superior to the bioactive glasses. Both the lumen diameter and the number of vessels were slightly increased in favor of beta-tricalcium phosphate. Conclusion. We can conclude that bone substitutes as bovine bone and beta-tricalcium phosphate have significant increased angiogenesis (and subsequent improved osteogenesis) compared to the bioactive glass. In our study, significant angiogenesis is linked with a greater tissue formation, indicating that in bone engineering with the allografts we used, inflammation has more benefic effects, the catabolic action being exceeded by the tissue formation.


2008 ◽  
Vol 396-398 ◽  
pp. 273-276 ◽  
Author(s):  
Mervi Puska ◽  
Joni Korventausta ◽  
Sufyan Garoushi ◽  
Jukka Seppälä ◽  
Pekka K. Vallittu ◽  
...  

In the coming decades, the need for reconstructive surgery of bones is predicted to increase with the ageing of the population as well as the increase of injuries needing traumatologic treatments. Therefore, there is still a constant search for tissue engineering and bone substitute materials. Xenografts, synthetic hydroxyapatitite, bioactive glasses and other bone substitutes have widely been studied. When bone defects are filled using bioceramics in granules, their utilization is limited to small size defects, because the injected granules do not give immediate support against the biomechanical loading of the bone. The aim of this study was to evaluate the preliminary biomineralization and the compression strength of experimental injectable bone cements modified with calcium ceramics. Our studies have focused on the development of injectable composites of bone cements, i.e. in situ curable resin systems containing impregnated Ca ceramics. The polymerized bone cement composites aspire to simulate as closely as possible the mechanical and structural properties properties of bone. The present compressive strength of our inorganic-organic bone cements are >65 up to ~180 MPa. These cements are slightly porous from their outermost surface and showed preliminarily osteoconductivity of some degree.


2020 ◽  
Vol XV (1) ◽  
Author(s):  
E. Presnyakov ◽  
I. Bozo ◽  
I. Smirnov ◽  
V. Komlev ◽  
V. Popov ◽  
...  

2018 ◽  
Vol 69 (2) ◽  
pp. 429-433
Author(s):  
Solyom Arpad ◽  
Cristian Trambitas ◽  
Ecaterina Matei ◽  
Eugeniu Vasile ◽  
Fodor Pal ◽  
...  

Osteoplasty, is a procedure mostly applied in complicated bone fractures. Nowadays this method is widely used in primary fracture treatment while the native bone graft is progressively replaced with various synthetic bone substitutes. From the numerous bone grafts we�d like to mention a representative of ceramics, the S53P4 bioactive glass. (BonAlive�). The aim of this study was to investigate the healing process of different fracture types generated on rabbit femurs. During this experiment we used seven common European rabbits. We separated these animals into two groups; in the first group we surgically generated a total fracture in the middle 1/3 of the femur, while in the second group, we produced only a bone defect on the femur. The osteoplasty was carried out with bioactive glass and autologous bone grafts. The radiographic follow-up was immediate after the operation and after 3, 6 and 7 weeks. The animals were euthanized after 19, 20 and 21 weeks, for histomorphometric examination of the femur. It was also studied the ionic release from the used bioactive glass at physiological pH and the etching of the glass was studied by Scanning Electron Microscopy.


Sign in / Sign up

Export Citation Format

Share Document