Enzymatic End-to-end Joining of DNA Molecules

1989 ◽  
pp. 531-551
Author(s):  
PETER E. LOBBAN ◽  
A.D. KAISER
Keyword(s):  
1973 ◽  
Vol 78 (3) ◽  
pp. 453-471 ◽  
Author(s):  
Peter E. Lobban ◽  
A.D. Kaiser
Keyword(s):  

1989 ◽  
Vol 264 (3) ◽  
pp. 1663-1670
Author(s):  
R C Williams ◽  
L A Rone
Keyword(s):  

2020 ◽  
pp. mbc.E20-06-0398
Author(s):  
Forooz Soroor ◽  
Moshe S. Kim ◽  
Oliva Palander ◽  
Yadu Balachandran ◽  
Richard F. Collins ◽  
...  

Septins are conserved GTP-binding cytoskeletal proteins that polymerize into filaments by end-to-end joining of heterooligomeric complexes. In human cells, both hexamers and octamers exist, and crystallography studies predicted the order of the hexamers to be SEPT7-SEPT6-SEPT2-SEPT2-SEPT6-SEPT7, while octamers are thought to have the same core, but with SEPT9 at the ends. However, based on this septin organization, octamers and hexamers would not be expected to co-polymerize due to incompatible ends. Here we isolated hexamers and octamers of specific composition from human cells and show that hexamers and octamers polymerize individually and, surprisingly, with each other. Binding of the BD3 domain of Borg3 results in distinctive clustering of each filament type. Moreover, we show that the organization of hexameric and octameric complexes is inverted compared to its original prediction. This revised septin organization is congruent with the organization and behavior of yeast septins suggesting that their properties are more conserved than was previously thought.


2021 ◽  
Author(s):  
Xiaocui Li ◽  
Xiaojuan Li ◽  
Chen Xie ◽  
Sihui Cai ◽  
Mengqiu Li ◽  
...  

AbstractAs a sensor of cytosolic DNA, the role of cyclic GMP-AMP synthase (cGAS) in innate immune response is well established, yet how its functions in different biological conditions remain to be elucidated. Here, we identify cGAS as an essential regulator in inhibiting mitotic DNA double-strand break (DSB) repair and protecting short telomeres from end-to-end fusion independent of the canonical cGAS-STING pathway. cGAS associates with telomeric/subtelomeric DNA during mitosis when TRF1/TRF2/POT1 are deficient on telomeres. Depletion of cGAS leads to mitotic chromosome end-to-end fusions predominantly occurring between short telomeres. Mechanistically, cGAS interacts with CDK1 and positions them to chromosome ends. Thus, CDK1 inhibits mitotic non-homologous end joining (NHEJ) by blocking the recruitment of RNF8. cGAS-deficient human primary cells are defective in entering replicative senescence and display chromosome end-to-end fusions, genome instability and prolonged growth arrest. Altogether, cGAS safeguards genome stability by controlling mitotic DSB repair to inhibit mitotic chromosome end-to-end fusions, thus facilitating replicative senescence.


PROTOPLASMA ◽  
1988 ◽  
Vol 145 (2-3) ◽  
pp. 200-203 ◽  
Author(s):  
R. C. Williams ◽  
Lisa A. Rone
Keyword(s):  

2019 ◽  
Vol 21 (23) ◽  
pp. 12566-12575 ◽  
Author(s):  
Marco Zoli

For short DNA molecules in crowded environments, we evaluate macroscopic parameters such as the average end-to-end distance and the twist conformation by tuning the strength of the site specific confinement driven by the crowders.


2019 ◽  
Author(s):  
Alexander Smirnov ◽  
Anastasia Yunusova ◽  
Alexey Korablev ◽  
Irina Serova ◽  
Veniamin Fishman ◽  
...  

AbstractMechanisms that ensure repair of double-stranded DNA breaks play a key role in the integration of foreign DNA into the genome of transgenic organisms. After pronuclear microinjection, exogenous DNA is usually found in the form of concatemer consisting of multiple co-integrated transgene copies. Here we investigated contribution of various DSB repair pathways to the concatemer formation. We injected a pool of linear DNA molecules carrying unique barcodes at both ends into mouse zygotes and obtained 10 transgenic embryos with transgene copy number ranging from 1 to 300 copies. Sequencing of the barcodes allowed us to assign relative positions to the copies in concatemers and to detect recombination events that happened during integration. Cumulative analysis of approximately 1000 integrated copies revealed that more than 80% of copies underwent recombination when their linear ends were processed by SDSA or DSBR. We also observed evidence of double Holliday junction (dHJ) formation and crossing-over during the formation of concatemers. Additionally, sequencing of indels between copies showed that at least 10% of the DNA molecules introduced into the zygote are ligated by non-homologous end joining (NHEJ). Our barcoding approach documents high activity of homologous recombination after exogenous DNA injection in mouse zygote.


1982 ◽  
Vol 2 (10) ◽  
pp. 1258-1269
Author(s):  
J H Wilson ◽  
P B Berget ◽  
J M Pipas

Molecular substrates for probing nonhomologous recombination in somatic cells were constructed by inserting pBR322 sequences at selected sites on the simian virus 40 (SV40) genome. The chimeric products are too large to be packaged into an SV40 capsid. Therefore, production of viable progeny requires that most of the pBR322 sequences be deleted without altering any SV40 sequences that are essential for lytic infection. As judged by plaque assay, these recombination events occur at readily detectable frequencies after transfection into CV1 monkey kidney cells. Depending on the site of pBR322 insertion, the infectivities of the full-length circular or linear chimeras ranged from 0.02 to 2% of the infectivity of linear wild-type SV40 DNA. Nucleotide sequence analysis of several recombinant progeny revealed three distinct classes of recombination junction and indicated that the causative recombination events were minimally dependent on sequence homology. Potential mechanisms involving recombination at internal sites or at ends were distinguished by measuring the infectivity of chimeric molecules from which various lengths of pBR322 had been removed. These data support end-to-end joining as the primary mechanism by which DNA segments recombine nonhomologously in somatic cells. This end joining appears to be very efficient, since SV40 genomes with complementary single-stranded tails or with short non-complementary pBR322 tails were comparably infectious. Overall, this study indicates that mammalian somatic cells are quite efficient at the willy-nilly end-to-end joining of unrelated DNA segments.


1982 ◽  
Vol 2 (10) ◽  
pp. 1258-1269 ◽  
Author(s):  
J H Wilson ◽  
P B Berget ◽  
J M Pipas

Molecular substrates for probing nonhomologous recombination in somatic cells were constructed by inserting pBR322 sequences at selected sites on the simian virus 40 (SV40) genome. The chimeric products are too large to be packaged into an SV40 capsid. Therefore, production of viable progeny requires that most of the pBR322 sequences be deleted without altering any SV40 sequences that are essential for lytic infection. As judged by plaque assay, these recombination events occur at readily detectable frequencies after transfection into CV1 monkey kidney cells. Depending on the site of pBR322 insertion, the infectivities of the full-length circular or linear chimeras ranged from 0.02 to 2% of the infectivity of linear wild-type SV40 DNA. Nucleotide sequence analysis of several recombinant progeny revealed three distinct classes of recombination junction and indicated that the causative recombination events were minimally dependent on sequence homology. Potential mechanisms involving recombination at internal sites or at ends were distinguished by measuring the infectivity of chimeric molecules from which various lengths of pBR322 had been removed. These data support end-to-end joining as the primary mechanism by which DNA segments recombine nonhomologously in somatic cells. This end joining appears to be very efficient, since SV40 genomes with complementary single-stranded tails or with short non-complementary pBR322 tails were comparably infectious. Overall, this study indicates that mammalian somatic cells are quite efficient at the willy-nilly end-to-end joining of unrelated DNA segments.


Sign in / Sign up

Export Citation Format

Share Document