scholarly journals Somatic cells efficiently join unrelated DNA segments end-to-end.

1982 ◽  
Vol 2 (10) ◽  
pp. 1258-1269 ◽  
Author(s):  
J H Wilson ◽  
P B Berget ◽  
J M Pipas

Molecular substrates for probing nonhomologous recombination in somatic cells were constructed by inserting pBR322 sequences at selected sites on the simian virus 40 (SV40) genome. The chimeric products are too large to be packaged into an SV40 capsid. Therefore, production of viable progeny requires that most of the pBR322 sequences be deleted without altering any SV40 sequences that are essential for lytic infection. As judged by plaque assay, these recombination events occur at readily detectable frequencies after transfection into CV1 monkey kidney cells. Depending on the site of pBR322 insertion, the infectivities of the full-length circular or linear chimeras ranged from 0.02 to 2% of the infectivity of linear wild-type SV40 DNA. Nucleotide sequence analysis of several recombinant progeny revealed three distinct classes of recombination junction and indicated that the causative recombination events were minimally dependent on sequence homology. Potential mechanisms involving recombination at internal sites or at ends were distinguished by measuring the infectivity of chimeric molecules from which various lengths of pBR322 had been removed. These data support end-to-end joining as the primary mechanism by which DNA segments recombine nonhomologously in somatic cells. This end joining appears to be very efficient, since SV40 genomes with complementary single-stranded tails or with short non-complementary pBR322 tails were comparably infectious. Overall, this study indicates that mammalian somatic cells are quite efficient at the willy-nilly end-to-end joining of unrelated DNA segments.

1982 ◽  
Vol 2 (10) ◽  
pp. 1258-1269
Author(s):  
J H Wilson ◽  
P B Berget ◽  
J M Pipas

Molecular substrates for probing nonhomologous recombination in somatic cells were constructed by inserting pBR322 sequences at selected sites on the simian virus 40 (SV40) genome. The chimeric products are too large to be packaged into an SV40 capsid. Therefore, production of viable progeny requires that most of the pBR322 sequences be deleted without altering any SV40 sequences that are essential for lytic infection. As judged by plaque assay, these recombination events occur at readily detectable frequencies after transfection into CV1 monkey kidney cells. Depending on the site of pBR322 insertion, the infectivities of the full-length circular or linear chimeras ranged from 0.02 to 2% of the infectivity of linear wild-type SV40 DNA. Nucleotide sequence analysis of several recombinant progeny revealed three distinct classes of recombination junction and indicated that the causative recombination events were minimally dependent on sequence homology. Potential mechanisms involving recombination at internal sites or at ends were distinguished by measuring the infectivity of chimeric molecules from which various lengths of pBR322 had been removed. These data support end-to-end joining as the primary mechanism by which DNA segments recombine nonhomologously in somatic cells. This end joining appears to be very efficient, since SV40 genomes with complementary single-stranded tails or with short non-complementary pBR322 tails were comparably infectious. Overall, this study indicates that mammalian somatic cells are quite efficient at the willy-nilly end-to-end joining of unrelated DNA segments.


1984 ◽  
Vol 218 (2) ◽  
pp. 475-482 ◽  
Author(s):  
A J Strain ◽  
A H Wyllie

The uptake and fate of purified SV40 (Simian virus 40) DNA, transfected into permissive CV-1 cells by calcium phosphate precipitates, was examined. By using a viral plaque assay, optimum conditions for transfection were established and transfection efficiencies of up to 10(6) plaque-forming units/micrograms of SV40 DNA were obtained. After a 2h exposure to 3H-labelled SV40 DNA-calcium phosphate co-precipitates under basal conditions, up to 7% of the input DNA became cell-associated, with approx. 4% reaching the nuclear fraction. This value was never exceeded, even under conditions known to enhance significantly the ultimate transfection efficiency, such as increased exposure time, addition of carrier DNA or treatment with DMSO (dimethyl sulphoxide) or glycerol. Substantial degradation of this SV40 DNA occurred within a further 4h, apparently in both nucleus and cytoplasm. Degradation of form-II and form-III SV40 DNA, which have lower transfection efficiencies than form-I DNA, was no more rapid than degradation of form-I DNA. The results indicate that less than 0.5% of the transfected DNA which reached the nucleus is protected from nuclease attack. The mechanism of action of agents such as glycerol, DMSO or carrier DNA remains obscure, but they may be involved in conferring greater stability to the intracellular SV40 DNA rather than merely affecting its rate of entry into the cell.


1982 ◽  
Vol 2 (12) ◽  
pp. 1595-1607 ◽  
Author(s):  
Timothy J. Miller ◽  
Janet E. Mertz

Purified simian virus 40 (SV40) DNA is reconstituted into chromatin and transcribed by endogenous RNA polymerase II when microinjected into nuclei ofXenopus laevisoocytes. We have correlated the kinetics of chromatin reconstitution with that of accumulation of virus-specific RNA in this system. A delay of approximately 3 h was found in the appearance of appreciable numbers of both fully supercoiled molecules and transcriptionally active templates. SV40 minichromosomes, isolated from virus-infected monkey cells with 0.2 M NaCl, also exhibited this lag in onset of transcriptional activity when microinjected into oocytes. These findings indicate that neither purified SV40 DNA nor SV40 DNA containing a full complement of nucleosomes can function as a template for transcription in vivo before association with appropriate cellular nonhistone chromosomal factors has taken place. In addition, the gradual degradation of linear SV40 DNA in oocytes was not sufficient to account for the fact that it was much less transcriptionally active than circular SV40 DNA. Taken together, these results indicate that the conformational state of the DNA can affect its ability to function as a template for transcription in vivo by RNA polymerase II. In contrast, transcription by RNA polymerase III of purified, circularized cloned DNAs encoding genes for 5S rRNA was detectable long before the injected DNAs had time to reconstitute into chromatin. Therefore, the template structural requirements for transcription in vivo by RNA polymerases II and III are different.


1984 ◽  
Vol 4 (8) ◽  
pp. 1476-1482
Author(s):  
H Ariga

The replicating activity of several cloned DNAs containing putative origin sequences was examined in a cell-free extract that absolutely depends on simian virus 40 (SV40) T antigen promoting initiation of SV40 DNA replication in vitro. Of the three DNAs containing the human Alu family sequence (BLUR8), the origin of (Saccharomyces cerevisiae plasmid 2 micron DNA (pJD29), and the yeast autonomous replicating sequence (YRp7), only BLUR8 was active as a template. Replication in a reaction mixture with BLUR8 as a template was semiconservative and not primed by a putative RNA polymerase III transcript synthesized on the Alu family sequence in vitro. Pulse-chase experiments showed that the small-sized DNA produced in a short-term incubation was converted to full-length closed circular and open circular DNAs in alkaline sucrose gradients. DNA synthesis in extracts began in a region of the Alu family sequence and was inhibited 80% by the addition of anti-T serum. Furthermore, partially purified T antigen bound the Alu family sequence in BLUR8 by the DNA-binding immunoassay. These results suggest that SV40 T antigen recognizes the Alu family sequence, similar to the origin sequence of SV40 DNA, and initiates semiconservative DNA replication in vitro.


1989 ◽  
Vol 9 (6) ◽  
pp. 2378-2386
Author(s):  
L A Neuhold ◽  
Y Shirayoshi ◽  
K Ozato ◽  
J E Jones ◽  
D W Nebert

The mouse cytochrome P1450 (CYP1A1) gene is responsible for the metabolism of numerous carcinogens and toxic chemicals. Induction by the environmental contaminant tetrachlorodibenzo-p-dioxin (TCDD) requires a functional aromatic hydrocarbon (Ah) receptor. We examined the 5'-flanking region of the CYP1A1 gene in mouse hepatoma Hepa-1 wild-type cells and a mutant line having a defect in chromatin binding of the TCDD-receptor complex. We identified two cis-acting elements (distal, -1071 to -901 region; proximal, -245 to -50 region) required for constitutive and TCDD-inducible CYP1A1 gene expression. Three classes of DNA-protein complexes binding to the distal element were identified: class I, found only in the presence of TCDD and a functional Ah receptor, that was heat labile and not competed against by simian virus 40 (SV40) early promoter DNA; class II, consisting of at least three constitutive complexes that were heat stable and bound to SV40 DNA; and class III, composed of at least three constitutive complexes that were thermolabile and were not competed against by SV40 DNA. Essential contacts for these proteins were centered at -993 to -990 for the class I complex, -987, -986, or both for the class II complexes, and -938 to -927 for the class III complexes. The proximal element was absolutely essential for both constitutive and TCDD-inducible CYP1A1 gene expression, and at least two constitutive complexes bound to this region. These data are consistent with the proximal element that binds proteins being necessary but not sufficient for inducible gene expression; interaction of these proteins with those at the distal element was found to be required for full CYP1A1 induction by TCDD.


1986 ◽  
Vol 6 (12) ◽  
pp. 4295-4304
Author(s):  
D B Roth ◽  
J H Wilson

Although DNA breakage and reunion in nonhomologous recombination are poorly understood, previous work suggests that short sequence homologies may play a role in the end-joining step in mammalian cells. To study the mechanism of end joining in more detail, we inserted a polylinker into the simian virus 40 T-antigen intron, cleaved the polylinker with different pairs of restriction enzymes, and transfected the resulting linear molecules into monkey cells. Analysis of 199 independent junctional sequences from seven constructs with different mismatched ends indicates that single-stranded extensions are relatively stable in monkey cells and that the terminal few nucleotides are critical for cell-mediated end joining. Furthermore, these studies define three mechanisms for end joining: single-strand, template-directed, and postrepair ligations. The latter two mechanisms depend on homologous pairing of one to six complementary bases to position the junction. All three mechanisms operate with similar overall efficiencies. The relevance of this work to targeted integration in mammalian cells is discussed.


1985 ◽  
Vol 5 (8) ◽  
pp. 2080-2089
Author(s):  
C T Wake ◽  
F Vernaleone ◽  
J H Wilson

Cultured animal cells rearrange foreign DNA very efficiently by homologous recombination. The individual steps that constitute the mechanism(s) of homologous recombination in transfected DNA are as yet undefined. In this study, we examined the topological requirements by using the genome of simian virus 40 (SV40) as a probe. By assaying homologous recombination between defective SV40 genomes after transfection into CV1 monkey cells, we showed that linear molecules are preferred substrates for homologous exchanges, exchanges are distributed around the SV40 genome, and the frequency of exchange is not diminished significantly by the presence of short stretches of non-SV40 DNA at the ends. These observations are considered in relation to current models of homologous recombination in mammalian cells, and a new model is proposed. The function of somatic cell recombination is discussed.


1985 ◽  
Vol 5 (8) ◽  
pp. 2080-2089 ◽  
Author(s):  
C T Wake ◽  
F Vernaleone ◽  
J H Wilson

Cultured animal cells rearrange foreign DNA very efficiently by homologous recombination. The individual steps that constitute the mechanism(s) of homologous recombination in transfected DNA are as yet undefined. In this study, we examined the topological requirements by using the genome of simian virus 40 (SV40) as a probe. By assaying homologous recombination between defective SV40 genomes after transfection into CV1 monkey cells, we showed that linear molecules are preferred substrates for homologous exchanges, exchanges are distributed around the SV40 genome, and the frequency of exchange is not diminished significantly by the presence of short stretches of non-SV40 DNA at the ends. These observations are considered in relation to current models of homologous recombination in mammalian cells, and a new model is proposed. The function of somatic cell recombination is discussed.


1985 ◽  
Vol 5 (8) ◽  
pp. 2019-2028 ◽  
Author(s):  
T Michaeli ◽  
C Prives

Expression of the simian virus 40 (SV40) early and late regions was examined in Xenopus laevis oocytes microinjected with viral DNA. In contrast to the situation in monkey cells, both late-strand-specific (L-strand) RNA and early-strand-specific (E-strand) RNA could be detected as early as 2 h after injection. At all time points tested thereafter, L-strand RNA was synthesized in excess over E-strand RNA. Significantly greater quantities of L-strand, relative to E-strand, RNA were detected over a 100-fold range of DNA concentrations injected. Analysis of the subcellular distribution of [35S]methionine-labeled viral proteins revealed that while the majority of the VP-1 and all detectable small t antigen were found in the oocyte cytoplasm, most of the large T antigen was located in the oocyte nucleus. The presence of the large T antigen in the nucleus led us to investigate whether this viral product influences the relative synthesis of late or early RNA in the oocyte as it does in infected monkey cells. Microinjection of either mutant C6 SV40 DNA, which encodes a large T antigen unable to bind specifically to viral regulatory sequences, or deleted viral DNA lacking part of the large T antigen coding sequences yielded ratios of L-strand to E-strand RNA that were similar to those observed with wild-type SV40 DNA. Taken together, these observations suggest that the regulation of SV40 RNA synthesis in X. laevis oocytes occurs by a fundamentally different mechanism than that observed in infected monkey cells. This notion was further supported by the observation that the major 5' ends of L-strand RNA synthesized in oocytes were different from those detected in infected cells. Furthermore, only a subset of those L-strand RNAs were polyadenylated.


1994 ◽  
Vol 72 (5-6) ◽  
pp. 195-201 ◽  
Author(s):  
Claude Hamelin ◽  
Benoit D'Amours ◽  
Christian Page ◽  
Young Sup Chung

Simian virus 40 (SV40) chromatin extracted from nuclei of infected monkey cells (CV1) was sedimented in neutral sucrose gradients, before and after digestion with bovine pancreatic RNase I-A or DNase I. DNA topoisomerase (TI) activity was found associated with RNase-resistant, DNase-sensitive SV40 nucleoprotein complexes. After polyacrylamide gel electrophoresis, a number of proteins with a molecular mass between 40 and 70 kDa were seen at the level of viral DNA peaks, some of which may represent catalytically active breakdown products of the TI enzyme. Large protein complexes were observed under the electron microscope in association with the viral chromosomes and appear to correspond to the SV40 DNA replication complex, including TI. Our results suggest that TI activity is indeed associated with the viral minichromosomes undergoing replication in vivo.Key words: deoxyribonucleoproteins, DNA topoisomerase, minichromosomes, ribonucleoproteins, simian virus 40, viral chromatin.


Sign in / Sign up

Export Citation Format

Share Document