SODIUM-ACTIVATED POTASSIUM CHANNEL IN AVIAN SENSORY NEURONS

Author(s):  
C. Haimann ◽  
C.R. Bader
2007 ◽  
Vol 98 (5) ◽  
pp. 2683-2692 ◽  
Author(s):  
Xian Xuan Chi ◽  
G. D. Nicol

Potassium channels play a critical role in regulating many aspects of action potential (AP) firing. To establish the contribution of the voltage-dependent potassium channel Kv1.1 in regulating excitability, we used the selective blocker dendrotoxin-K (DTX-K) and small interfering RNA (siRNA) targeted to Kv1.1 to determine their effects on AP firing in small-diameter capsaicin-sensitive sensory neurons. A 5-min exposure to 10 nM DTX-K suppressed the total potassium current ( IK) measured at +40 mV by about 33%. DTX-K produced a twofold increase in the number of APs evoked by a ramp of depolarizing current. Associated with increased firing was a decrease in firing threshold and rheobase. DTX-K did not alter the resting membrane potential or the AP duration. A 48-h treatment with siRNA targeted to Kv1.1 reduced the expression of this channel protein by about 60% as measured in Western blots. After treatment with siRNA, IK was no longer sensitive to DTX-K, indicating a loss of functional protein. Similarly, after siRNA treatment exposure to DTX-K had no effect on the number of evoked APs, firing threshold, or rheobase. However, after siRNA treatment, the firing threshold had values similar to those obtained after acute exposure to DTX-K, suggesting that the loss of Kv1.1 plays a critical role in setting this parameter of excitability. These results demonstrate that Kv1.1 plays an important role in limiting AP firing and that siRNA may be a useful approach to establish the role of specific ion channels in the absence of selective antagonists.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


Sign in / Sign up

Export Citation Format

Share Document