A COMPARISON OF THE SUPRAMOLECULAR ARCHITECTURE OF PHOTOSYNTHETIC MEMBRANES OF BLUE-GREEN, RED, AND GREEN ALGAE AND OF HIGHER PLANTS

Author(s):  
L. Andrew Staehelin ◽  
Thomas H. Giddings ◽  
Paul Badami ◽  
William W. Krzymowski
Author(s):  
L. V. Leak

Electron microscopic observations of freeze-fracture replicas of Anabaena cells obtained by the procedures described by Bullivant and Ames (J. Cell Biol., 1966) indicate that the frozen cells are fractured in many different planes. This fracturing or cleaving along various planes allows one to gain a three dimensional relation of the cellular components as a result of such a manipulation. When replicas that are obtained by the freeze-fracture method are observed in the electron microscope, cross fractures of the cell wall and membranes that comprise the photosynthetic lamellae are apparent as demonstrated in Figures 1 & 2.A large portion of the Anabaena cell is composed of undulating layers of cytoplasm that are bounded by unit membranes that comprise the photosynthetic membranes. The adjoining layers of cytoplasm are closely apposed to each other to form the photosynthetic lamellae. Occassionally the adjacent layers of cytoplasm are separated by an interspace that may vary in widths of up to several 100 mu to form intralamellar vesicles.


Author(s):  
A. E. Hotchkiss ◽  
A. T. Hotchkiss ◽  
R. P. Apkarian

Multicellular green algae may be an ancestral form of the vascular plants. These algae exhibit cell wall structure, chlorophyll pigmentation, and physiological processes similar to those of higher plants. The presence of a vascular system which provides water, minerals, and nutrients to remote tissues in higher plants was believed unnecessary for the algae. Among the green algae, the Chaetophorales are complex highly branched forms that might require some means of nutrient transport. The Chaetophorales do possess apical meristematic groups of cells that have growth orientations suggestive of stem and root positions. Branches of Chaetophora incressata were examined by the scanning electron microscope (SEM) for ultrastructural evidence of pro-vascular transport.


2014 ◽  
Vol 1065-1069 ◽  
pp. 114-118
Author(s):  
Shuo Fu Tian ◽  
Chao Jin Lu ◽  
Yuan Wang

It is the components, living things evolution processes, development environments, distribution layers and the earliest time for coal series formation that are investigated and studied in detail based on the author’s graduation thesis, the “Geobiology” , the “China coal petrology” and the other’s some references in this paper. And it is considered that mainly two types of the Coal Series might be distinguish in the geologic history in China, respectively consisted of the lower organisms (especially the lower plants, blue-green algae) and higher organisms (especially the higher plants, pteridophyta, gymnosperms, Anthophyta). Meanwhile, the conclusions can be drawn that the development of the organisms is not only controlled by the environments, on the other hand, the environments and their sediments are also affected by the ecologies of the organisms. So the coal bed or coal series can be used as the marks of the environment explanation, perhaps having some Significances of Geobiology. In additional, the relationship with an unconformity or disconformity is discussed here, too.


Sign in / Sign up

Export Citation Format

Share Document