Methionine Biosynthesis

Author(s):  
Martin Flavin
1990 ◽  
Vol 36 (1) ◽  
pp. 61-64 ◽  
Author(s):  
Paolo Giudici ◽  
Patrizia Romano ◽  
Carlo Zambonelli

A hundred strains of Saccharomyces cerevisiae were examined for the ability to produce higher alcohols. In the strains tested the production of higher alcohols was found to be an individual strain characteristic and, as such, was statistically significant. The characteristics of the strains used (flocculation ability, foaming ability, killer character, and non-H2S production) were found to be uncorrelated to isobutanol and isoamyl alcohol production, whereas the production of high levels of n-propanol was found to be related to inability to produce H2S. This, in turn, suggests a link to methionine biosynthesis. Key words: Saccharomyces cerevisiae, higher alcohols, biometry, H2S production.


1984 ◽  
Vol 30 (6) ◽  
pp. 837-840 ◽  
Author(s):  
Lawrence I. Hochstein ◽  
Geraldine A. Tomlinson

A synthetic medium, consisting of inorganic salts and any of a number of carbon sources, supported the aerobic growth of Paracoccus halodenitrificans when supplemented with thiamine. The same medium plus an appropriate nitrogenous oxide supported anaerobic growth when additionally supplemented with methionine. The observation that vitamin B12 or betaine replaced methionine suggested that P. halodenitrificans had a defect in the cobalamin-dependent pathway for methionine biosynthesis, as well as the inability to synthesize betaine when growing anaerobically.


Microbiology ◽  
1995 ◽  
Vol 141 (2) ◽  
pp. 431-439 ◽  
Author(s):  
M. Foglino ◽  
F. Borne ◽  
M. Bally ◽  
G. Ball ◽  
J. C. Patte

2004 ◽  
Vol 72 (6) ◽  
pp. 3310-3314 ◽  
Author(s):  
Linda J. Ejim ◽  
Vanessa M. D'Costa ◽  
Nadine H. Elowe ◽  
J. Concepción Loredo-Osti ◽  
Danielle Malo ◽  
...  

ABSTRACT The biosynthesis of methionine in bacteria requires the mobilization of sulfur from Cys by the formation and degradation of cystathionine. Cystathionine β-lyase, encoded by metC in bacteria and STR3 in Schizosaccharomyces pombe, catalyzes the breakdown of cystathionine to homocysteine, the penultimate step in methionine biosynthesis. This enzyme has been suggested to be the target for pyridinamine antimicrobial agents. We have demonstrated, by using purified enzymes from bacteria and yeast, that cystathionine β-lyase is not the likely target of these agents. Nonetheless, an insertional inactivation of metC in Salmonella enterica serovar Typhimurium resulted in the attenuation of virulence in a mouse model of systemic infection. This result confirms a previous chemical validation of the Met biosynthetic pathway as a target for the development of antibacterial agents and demonstrates that cystathionine β-lyase is important for bacterial virulence.


1964 ◽  
Vol 239 (8) ◽  
pp. 2545-2552
Author(s):  
Herbert Dickerman ◽  
Betty G. Redfield ◽  
J.G. Bieri ◽  
Herbert Weissbach

1982 ◽  
Vol 257 (24) ◽  
pp. 14944-14948
Author(s):  
W E Skiba ◽  
M P Taylor ◽  
M S Wells ◽  
J H Mangum ◽  
W M Awad

Sign in / Sign up

Export Citation Format

Share Document