energy regeneration
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 60)

H-INDEX

23
(FIVE YEARS 6)

2021 ◽  
Vol 23 (1) ◽  
pp. 113
Author(s):  
Chien-Hsiu Li ◽  
Chiao-Chun Liao

Cancer is usually a result of abnormal glucose uptake and imbalanced nutrient metabolization. The dysregulation of glucose metabolism, which controls the processes of glycolysis, gives rise to various physiological defects. Autophagy is one of the metabolic-related cellular functions and involves not only energy regeneration but also tumorigenesis. The dysregulation of autophagy impacts on the imbalance of metabolic homeostasis and leads to a variety of disorders. In particular, the microRNA (miRNA) Let-7 has been identified as related to glycolysis procedures such as tissue repair, stem cell-derived cardiomyocytes, and tumoral metastasis. In many cancers, the expression of glycolysis-related enzymes is correlated with Let-7, in which multiple enzymes are related to the regulation of the autophagy process. However, much recent research has not comprehensively investigated how Let-7 participates in glycolytic reprogramming or its links to autophagic regulations, mainly in tumor progression. Through an integrated literature review and omics-related profiling correlation, this review provides the possible linkage of the Let-7 network between glycolysis and autophagy, and its role in tumor progression.


2021 ◽  
pp. 103744
Author(s):  
Holly Warner ◽  
Poya Khalaf ◽  
Hanz Richter ◽  
Dan Simon ◽  
Elizabeth Hardin ◽  
...  

Author(s):  
Chao Wang ◽  
Weijie Zhang ◽  
Guosheng Wang ◽  
Yong Guo

High power density energy regeneration is one of the effective solutions to solve the contradiction between improving the damping performance and energy consumption of active suspension. The hydraulic commutator is used to realize hydraulic rectification and hydraulic variable speed/pump/motor with few teeth difference gear pairs is used to match the speed, combined with permanent magnet motor power generation and power supply to put forward kilowatt level high power density mechanical-electrical-hydraulic regenerative suspension system for high-speed tracked vehicles. The mathematical model and fluid-solid-thermo-magnetic multiphysics coupling model are built to analyze the damping performance and regenerative characteristics of the system under passive and semi-active working conditions. The simulation results show that the damping force of the system increases with the increase of the road excitation amplitude and the semi-active control can be realized by adjusting the duty cycle with the PWM control rectifier module. The high power density mechanical-electrical-hydraulic regenerative suspension system can realize kilowatt level energy regeneration, and the regenerative efficiency is more than 50% under low-frequency excitation. The temperature rise of the system is low during operation, which is helpful to improve the reliability and service life.


Author(s):  
Amin Ghorbanpour ◽  
Hanz Richter

Abstract In this work, a new drive concept for brushless direct current (BLDC) motors is introduced. Energy regeneration is optimally managed with the aim of improving the energy efficiency of robot motion controls. The proposed scheme has three independent regenerative drives interconnected in a wye configuration. An augmented model of the robot, joint mechanisms, and BLDC motors is formed, and then a voltage-based control scheme is developed. The control law is obtained by specifying an outer-loop torque controller followed by minimization of power consumption via online constrained quadratic optimization. An experiment is conducted to assess the performance of the proposed concept against an off-the-shelf driver. It is shown that, in terms of energy regeneration and consumption, the developed driver has better performance. Furthermore, the proposed concept showed a reduction of 15% energy consumption for the conditions of the study.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5014
Author(s):  
Jixiang Yang ◽  
Yongming Bian ◽  
Meng Yang ◽  
Jie Shao ◽  
Ao Liang

Oil shortages and environmental pollution are attracting worldwide attention incrementally. Hybrid falls within one of the effective techniques for those two problems. Taking the loader with high energy consumption and high emission as the target, combined with the hydraulic hybrid technology with high power density and strong energy storage capacity, the parallel hydraulic hybrid loader (PHHL) based on brake energy regeneration is proposed. Firstly, the dynamic models of the key components of the PHHL are established, and the parameters of the part which coincides with the ordinary loader are corrected based on the V-type duty cycle. Then, consid-ering the energy recovery efficiency as well as the characteristics of the loader from the V-type duty cycle, the parameters for several major parts of the energy regeneration system (ERS) were calculated and matched. Then, based on the initial matching, the improved adaptive genetic al-gorithm (AGA) is employed to optimize the control variable of the control strategy and the design parameters of ERS to enhance the economic benefit and performance of the ERS. Furthermore, a simulation validation was conducted. Simulation results show that the ERS with optimized pa-rameters could improve the fuel-saving effect by 25% compared to the ERS with initial parameters, which indicated the rationality of the optimized parameters. Finally, the fuel consumption test of the PHHL prototype under the V-type duty cycle is performed. The results show that the PHHL with the optimization scheme can achieve 9.12% fuel saving, which is on the brink of the potential of brake energy recovery and verifies the feasibility of applying hydraulic hybrid technology on the loader.


2021 ◽  
Vol 53 (4) ◽  
pp. 210406
Author(s):  
Edgar Buwana Sutawika ◽  
I. Indrawanto ◽  
F. Ferryanto ◽  
Sandro Mihradi ◽  
Andi Isra Mahyuddin

In this research, the robotic ankle design from Arizona State University (ASU) known as SPARKy was redesigned to accommodate the specific needs of Indonesian people. Most active prosthetic legs are designed based on gait parameters for people from Western countries, which may differ for people from other cultures that have a different anthropometry and economic background. Indonesians have smaller actuating power characteristics compared to people from Western cultures due to their smaller average weight and body height. Thus, the applied design strategy took advantage of a biomechanical energy regeneration scheme to reduce the actuator input power requirement and the relatively smaller mechanical power of the typical Indonesian ankle to create a potentially affordable robotic ankle with a smaller actuator that meets the technical specifications. The specifications of the powered prosthetic ankle were determined through the same methods used by SPARKy. Only one low-level control system, to actuate normal walking, was designed and tested on a fully assembled robotic ankle. The test results indicated a promising low-level control, where the robotic ankle can follow the predetermined trajectory required to actuate normal walking based on Indonesian gait data.


Author(s):  
R. Palanisamy ◽  
Rohit Sahasrabuddhe ◽  
Mathur Kartik Hiteshkumar ◽  
Jay Anil Puranik

<span>Amidst the ever-increasing advancements in the technological realm-the electrical vehicle industry too has seen several leaps. This particularly owes to three primary factors one, the fact that we are running out of conventional resources like petrol and diesel; two, higher efficiency of electric vehicles; and finally, less pollution caused by them. This has led to a burgeoning in the use of BLDC motors with electronic commutation not only in EVs but also in industrial and commercial applications. This requires an enhanced driving and control mechanism to tap the efficiency that such motors provide to increase performance and to get better controllability and reliability. This paper presents a controller for this EV motor driver with increased efficiency by combining various strategies.</span>


Sign in / Sign up

Export Citation Format

Share Document