Mass Distribution Data from the 1969 Pasadena Smog Experiment

Author(s):  
D.A. LUNDGREN
1996 ◽  
Vol 76 (1) ◽  
pp. 23-28 ◽  
Author(s):  
L. M. Dwyer ◽  
B. L. Ma ◽  
D. W. Stewart ◽  
H. N. Hayhoe ◽  
D. Balchin ◽  
...  

Tillage effects on the soil environment suggest that it may influence rooting depth and root distribution. In this study, corn (Zea mays L.) rooting depth and root mass distribution were compared under conventional and conservation (chisel, ridge, no-) tillage on sandy loam and clay loam soils at Ottawa, Ontario. Root depth and distribution in 0.10-m vertical increments during vegetative growth were estimated using a combination of excavation of the surface horizon (0–0.10 m) and 0.05-m diameter cores obtained in the row and midway between two rows over a 3-yr period. An exponential model was used to fit root mass distribution data normalized with respect to total root density summed over all increments and maximum rooting depth in the profile. Soil moisture, temperature, mechanical resistance and bulk density varied with tillage treatment, but differences were not associated with root mass distribution. Rooting depth varied with soil texture, year and tillage, with increased rooting depth associated with increased tillage and decreased moisture in surface soil layers. In contrast, a common exponential model was found to fit normalized root mass distribution data under all tillage treatments. Our data suggest that simulation of root mass distribution under all tillage practices is possible if rooting depth and root mass density of the surface soil layer are known. Key words: Corn, model fitting, root distribution, tillage, Zea mays


1971 ◽  
Vol 13 ◽  
pp. 227-239 ◽  
Author(s):  
Jack B. Hartung ◽  
Friedrich Hörz ◽  
Donald E. Gault

About 5000 microcraters on seven lunar rocks recovered during the Apollo 12 mission have been systematically studied using a stereomicroscope. Based on comparisons with laboratory cratering experiments, at least 95 percent of all millimeter-sized craters observed were formed by impacts in which the impact velocity exceeded 10 km/s. The dynamics of particle motion near the Moon and the distribution of microcraters on the rocks require an extralunar origin for these impacting particles.The microcrater population on at least one side of all rocks studied was in equilibrium for millimeter-sized craters; i.e., statistically, craters a few millimeters in diameter and smaller were being removed by the superposition of new craters at the same rate new craters were being formed. Selected surfaces of some rocks, particularly those with glass coatings, are not in equilibrium. For every particle incident upon these “production” surfaces, there remains for observation a corresponding crater; thus the population of craters on such a surface is directly related to the total population of particles impacting that surface.Crater size-distribution data from production surfaces, together with an experimentally determined relationship between the crater size and the physical parameters of the impacting particle, yield the mass distribution of the interplanetary dust at 1 AU. Based on assumptions corresponding to an impact velocity of about 20 km/s and a particle density of 3 g/cm3, the cumulative particle flux versus mass distribution relationship iswhere N is the number of particles of mass m in grams, and larger, and C depends on the time-area product, which is, for the present, unknown. For particles smaller than 10-8 g, our observations indicate a sharper decrease in the absolute value of the slope of the flux versus mass curve than is indicated by satellite-borne-experiment data. This result may be due to a genuine relative decrease in the number or kinetic energy of smaller particles, or it may be due to our inability to observe quantitatively the smallest microcraters. For particles larger than 10-6 g, the slope of the flux versus mass curve increases smoothly to an absolute value greater than one.


Author(s):  
S. Golladay

The theory of multiple scattering has been worked out by Groves and comparisons have been made between predicted and observed signals for thick specimens observed in a STEM under conditions where phase contrast effects are unimportant. Independent measurements of the collection efficiencies of the two STEM detectors, calculations of the ratio σe/σi = R, where σe, σi are the total cross sections for elastic and inelastic scattering respectively, and a model of the unknown mass distribution are needed for these comparisons. In this paper an extension of this work will be described which allows the determination of the required efficiencies, R, and the unknown mass distribution from the data without additional measurements or models. Essential to the analysis is the fact that in a STEM two or more signal measurements can be made simultaneously at each image point.


2006 ◽  
Vol 20 ◽  
pp. 269-270 ◽  
Author(s):  
L.E. Campusano ◽  
E.S. Cypriano ◽  
L. Jr. Sodré ◽  
J.-P. Kneib

2006 ◽  
Vol 133 ◽  
pp. 107-110 ◽  
Author(s):  
B. E. Blue ◽  
S. V. Weber ◽  
D. T. Woods ◽  
M. J. Bono ◽  
S. N. Dixit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document