Structure and Functions of Aquaporin-4-Based Orthogonal Arrays of Particles

Author(s):  
Hartwig Wolburg ◽  
Karen Wolburg-Buchholz ◽  
Petra Fallier-Becker ◽  
Susan Noell ◽  
Andreas F. Mack
2013 ◽  
Vol 2 (4) ◽  
pp. 143-154 ◽  
Author(s):  
Grazia Paola Nicchia ◽  
Francesco Pisani ◽  
Angelo Sparaneo ◽  
Maria Grazia Mola ◽  
Davide Basco ◽  
...  

2016 ◽  
Vol 17 (8) ◽  
pp. 1230 ◽  
Author(s):  
Petra Fallier-Becker ◽  
Maike Nieser ◽  
Ulrike Wenzel ◽  
Rainer Ritz ◽  
Susan Noell

2012 ◽  
Vol 125 (18) ◽  
pp. 4405-4412 ◽  
Author(s):  
A. Rossi ◽  
T. J. Moritz ◽  
J. Ratelade ◽  
A. S. Verkman

Neuroscience ◽  
2011 ◽  
Vol 189 ◽  
pp. 79-92 ◽  
Author(s):  
B. Hirt ◽  
C. Gleiser ◽  
A. Eckhard ◽  
A.F. Mack ◽  
M. Müller ◽  
...  

2008 ◽  
Vol 19 (8) ◽  
pp. 3369-3378 ◽  
Author(s):  
Jonathan M. Crane ◽  
Alfred N. Van Hoek ◽  
William R. Skach ◽  
A. S. Verkman

Freeze-fracture electron microscopy (FFEM) indicates that aquaporin-4 (AQP4) water channels can assemble in cell plasma membranes in orthogonal arrays of particles (OAPs). We investigated the determinants and dynamics of AQP4 assembly in OAPs by tracking single AQP4 molecules labeled with quantum dots at an engineered external epitope. In several transfected cell types, including primary astrocyte cultures, the long N-terminal “M1” form of AQP4 diffused freely, with diffusion coefficient ∼5 × 10−10 cm2/s, covering ∼5 μm in 5 min. The short N-terminal “M23” form of AQP4, which by FFEM was found to form OAPs, was relatively immobile, moving only ∼0.4 μm in 5 min. Actin modulation by latrunculin or jasplakinolide did not affect AQP4-M23 diffusion, but deletion of its C-terminal postsynaptic density 95/disc-large/zona occludens (PDZ) binding domain increased its range by approximately twofold over minutes. Biophysical analysis of short-range AQP4-M23 diffusion within OAPs indicated a spring-like potential, with a restoring force of ∼6.5 pN/μm. These and additional experiments indicated that 1) AQP4-M1 and AQP4-M23 isoforms do not coassociate in OAPs; 2) OAPs can be imaged directly by total internal reflection fluorescence microscopy; and 3) OAPs are relatively fixed, noninterconvertible assemblies that do not require cytoskeletal or PDZ-mediated interactions for formation. Our measurements are the first to visualize OAPs in live cells.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 119
Author(s):  
Francesco Pisani ◽  
Laura Simone ◽  
Maria Mola ◽  
Manuela De Bellis ◽  
Maria Mastrapasqua ◽  
...  

The CNS plasma-membrane water channel aquaporin-4 (AQP4) is expressed as two major isoforms able to aggregate into supramolecular assemblies known as ‘orthogonal arrays of particles’ (OAPs). OAP subnanometric features are largely unknown mainly because a method for the expression, isolation, and crystallization of integral human OAPs has not been developed. Here, the human OAP-forming isoform M23-AQP4 was expressed in insect and mammalian cell lines and AQP4 and OAP features evaluated. Native size exclusion chromatography was employed to isolate and analyze authentically folded OAPs, and neuromyelitis optica (NMO)-specific sandwich ELISA was developed to test OAP-integrity. The results demonstrate that in insect cells most AQP4 remains intracellular and unfolded and that OAPs are largely disassembled after the detergent extraction step. In mammalian cells, AQP4 showed regular plasma membrane targeting and OAPs exhibited strong post-extraction stability. Starting from the mammalian cell expression system, we isolated authentically folded OAPs. Together these data suggest a new strategy for expressing and isolating integral recombinant human OAPs and providing new insights into the cell-type dependent OAP-assembly and post-extraction stability, potentially useful to design new approaches for structural and functional studies of OAP and for other plasma membrane proteins organized into supramolecular structures.


Glia ◽  
2009 ◽  
Vol 57 (13) ◽  
pp. 1363-1373 ◽  
Author(s):  
Grazia Paola Nicchia ◽  
Mauro Mastrototaro ◽  
Andrea Rossi ◽  
Francesco Pisani ◽  
Carla Tortorella ◽  
...  

2001 ◽  
Vol 154 (6) ◽  
pp. 1235-1244 ◽  
Author(s):  
Monica Carmosino ◽  
Giuseppe Procino ◽  
Grazia Paola Nicchia ◽  
Roberta Mannucci ◽  
Jean-Marc Verbavatz ◽  
...  

To test the involvement of the water channel aquaporin (AQP)-4 in gastric acid physiology, the human gastric cell line (HGT)-1 was stably transfected with rat AQP4. AQP4 was immunolocalized to the basolateral membrane of transfected HGT-1 cells, like in native parietal cells. Expression of AQP4 in transfected cells increased the osmotic water permeability coefficient (Pf) from 2.02 ± 0.3 × 10−4 to 16.37 ± 0.5 × 10−4 cm/s at 20°C. Freeze-fracture EM showed distinct orthogonal arrays of particles (OAPs), the morphological signature of AQP4, on the plasma membrane of AQP4-expressing cells. Quantitative morphometry showed that the density of OAPs was 2.5 ± 0.3% under basal condition and decreased by 50% to 1.2 ± 0.3% after 20 min of histamine stimulation, mainly due to a significant decrease of the OAPs number. Concomitantly, Pf decreased by ∼35% in 20-min histamine-stimulated cells. Both Pf and OAPs density were not modified after 10 min of histamine exposure, time at which the maximal hormonal response is observed. Cell surface biotinylation experiments confirmed that AQP4 is internalized after 20 min of histamine exposure, which may account for the downregulation of water transport. This is the first evidence for short term rearrangement of OAPs in an established AQP4-expressing cell line.


1997 ◽  
Vol 110 (22) ◽  
pp. 2855-2860 ◽  
Author(s):  
J.M. Verbavatz ◽  
T. Ma ◽  
R. Gobin ◽  
A.S. Verkman

Freeze-fracture electron microscopy (FFEM) of kidney collecting duct, muscle, astrocytes in brain, and other mammalian tissues has revealed regular square arrays of intramembrane particles called orthogonal arrays of particles (OAPs). Their possible role in membrane structure and transport have been proposed, and their absence or decrease has been noted in a variety of hereditary and acquired diseases. A transgenic mouse lacking water channel AQP4 was used to show that AQP4 is the OAP protein. FFEM was done on kidney, skeletal muscle, and brain from AQP4 wild-type [+/+], heterozygous [+/−] and knock-out [-/-] mice. The [-/-] mice did not express detectable AQP4 protein, but were grossly indistinguishable from [+/+] mice. FFEM was done on blinded samples of kidney, brain and muscle from 9 mice. In all 6 kidney samples from [+/+] and [+/−] mice, OAPs similar to those in AQP4-transfected CHO cells were found in basolateral membranes of collecting duct principal cells. In all muscle and brain samples from [+/+] and [+/−] mice, OAPs of identical ultrastructure to those in kidney were seen, but in smaller patch sizes. OAPs were not seen in any sample from [-/-] mice. Label-fracture analysis using a peptide-derived AQP4 polyclonal antibody showed immunogold labeling of OAPs in AQP4-expressing CHO cells. These studies provide direct evidence that AQP4 is required for formation of OAPs and is a component of OAPs, thus establishing the identity and function of OAPs.


Sign in / Sign up

Export Citation Format

Share Document