Role of the Autophagy Gene Atg5 in T Lymphocyte Survival and Proliferation

Author(s):  
Ming-Xiao He ◽  
Ying Wan ◽  
You-Wen He
2016 ◽  
Vol 36 (8) ◽  
pp. 1638-1646 ◽  
Author(s):  
Sri N. Batchu ◽  
Angie Hughson ◽  
Kristine M. Wadosky ◽  
Craig N. Morrell ◽  
Deborah J. Fowell ◽  
...  

2005 ◽  
Vol 201 (11) ◽  
pp. 1709-1714 ◽  
Author(s):  
David G. Bowen ◽  
Christopher M. Walker

The mechanisms by which the hepatitis C virus (HCV) establishes persistence are not yet fully understood. Previous chimpanzee and now human studies suggest that mutations within MHC class I–restricted HCV epitopes might contribute to viral escape from cytotoxic T lymphocyte (CTL) responses. However, there are several outstanding questions regarding the role of escape mutations in viral persistence and their fate in the absence of immune selection pressure.


Author(s):  
Constantine D. Tsoukas ◽  
Mary Valentine ◽  
Martin Lotz ◽  
John H. Vaughan ◽  
Dennis A. Carson

Endocrinology ◽  
2019 ◽  
Vol 161 (1) ◽  
Author(s):  
Arin K Oestreich ◽  
Sangappa B Chadchan ◽  
Pooja Popli ◽  
Alexandra Medvedeva ◽  
Marina N Rowen ◽  
...  

Abstract Uterine receptivity is critical for establishing and maintaining pregnancy. For the endometrium to become receptive, stromal cells must differentiate into decidual cells capable of secreting factors necessary for embryo survival and placental development. Although there are multiple reports of autophagy induction correlated with endometrial stromal cell (ESC) decidualization, the role of autophagy in decidualization has remained elusive. To determine the role of autophagy in decidualization, we utilized 2 genetic models carrying mutations to the autophagy gene Atg16L1. Although the hypomorphic Atg16L1 mouse was fertile and displayed proper decidualization, conditional knockout in the reproductive tract of female mice reduced fertility by decreasing the implantation rate. In the absence of Atg16L1, ESCs failed to properly decidualize and fewer blastocysts were able to implant. Additionally, small interfering RNA knock down of Atg16L1 was detrimental to the decidualization response of human ESCs. We conclude that Atg16L1 is necessary for decidualization, implantation, and overall fertility in mice. Furthermore, considering its requirement for human endometrial decidualization, these data suggest Atg16L1 may be a potential mediator of implantation success in women.


Sign in / Sign up

Export Citation Format

Share Document