scholarly journals The Autophagy Gene Atg16L1 is Necessary for Endometrial Decidualization

Endocrinology ◽  
2019 ◽  
Vol 161 (1) ◽  
Author(s):  
Arin K Oestreich ◽  
Sangappa B Chadchan ◽  
Pooja Popli ◽  
Alexandra Medvedeva ◽  
Marina N Rowen ◽  
...  

Abstract Uterine receptivity is critical for establishing and maintaining pregnancy. For the endometrium to become receptive, stromal cells must differentiate into decidual cells capable of secreting factors necessary for embryo survival and placental development. Although there are multiple reports of autophagy induction correlated with endometrial stromal cell (ESC) decidualization, the role of autophagy in decidualization has remained elusive. To determine the role of autophagy in decidualization, we utilized 2 genetic models carrying mutations to the autophagy gene Atg16L1. Although the hypomorphic Atg16L1 mouse was fertile and displayed proper decidualization, conditional knockout in the reproductive tract of female mice reduced fertility by decreasing the implantation rate. In the absence of Atg16L1, ESCs failed to properly decidualize and fewer blastocysts were able to implant. Additionally, small interfering RNA knock down of Atg16L1 was detrimental to the decidualization response of human ESCs. We conclude that Atg16L1 is necessary for decidualization, implantation, and overall fertility in mice. Furthermore, considering its requirement for human endometrial decidualization, these data suggest Atg16L1 may be a potential mediator of implantation success in women.

2020 ◽  
Vol 102 (4) ◽  
pp. 843-851 ◽  
Author(s):  
Arin K Oestreich ◽  
Sangappa B Chadchan ◽  
Alexandra Medvedeva ◽  
John P Lydon ◽  
Emily S Jungheim ◽  
...  

Abstract Successful establishment of pregnancy depends on steroid hormone-driven cellular changes in the uterus during the peri-implantation period. To become receptive to embryo implantation, uterine endometrial stromal cells (ESCs) must transdifferentiate into decidual cells that secrete factors necessary for embryo survival and trophoblast invasion. Autophagy is a key homeostatic process vital for cellular homeostasis. Although the uterus undergoes major cellular changes during early pregnancy, the precise role of autophagy in uterine function is unknown. Here, we report that conditional knockout of the autophagy protein FIP200 in the reproductive tract of female mice results in reduced fecundity due to an implantation defect. In the absence of FIP200, aberrant progesterone signaling results in sustained uterine epithelial proliferation and failure of stromal cells to decidualize. Additionally, loss of FIP200 impairs decidualization of human ESCs. We conclude that the autophagy protein FIP200 plays a crucial role in uterine receptivity, decidualization, and fertility. These data establish autophagy as a major cellular pathway required for uterine receptivity and decidualization in both mice and human ESCs.


2009 ◽  
Vol 21 (9) ◽  
pp. 27
Author(s):  
H. Singh ◽  
G. Nie

Controlled invasion of extravillous trophoblast (EVT) through the maternal decidua is important for placental development and function. Serine protease HtrA3 is highly expressed in the decidual cells in the late secretory phase of the menstrual cycle and throughout pregnancy. It is highly expressed in first trimester in most trophoblast cell types, but not in the invading interstitial trophoblast. HtrA3 and its family members are down-regulated in a number of cancers and are proposed as tumor-suppressors. We hypothesized that HtrA3 is an inhibitor of trophoblast invasion and is down-regulated in invading EVTs, while up-regulation of decidual HtrA3 controls the process. The current study investigated HtrA3 expression in human endometrial stromal cells (HESC) during decidualization in vitro and whether HtrA3 inhibits EVT cell invasion. Stromal cells isolated from human endometrium were decidualized in vitro with estrogen, progesterone and cAMP. Quantitative RT-PCR and western showed HtrA3 mRNA and protein expression was significantly increased in decidualized HESC compared to controls. Indirect immunofluorescence showed homogeneous pattern and increase in intensity of HtrA3 staining in decidualized HESC compared to non-decidualized cells. HTR-8 cells derived from first trimester of pregnancy EVT showed higher levels of HtrA3 mRNA expression compared to other human choriocarcinoma cell lines (AC-1M88, AC-1M32, JEG-3 and BeWo). Both intracellular and extracellular HtrA3 staining was observed in HTR8 cells. Functional role of HtrA3 in cell invasion was determined in HTR-8 cells using an in vitro invasion assay. Exogenous addition of mutant HtrA3 (inhibitor) resulted in a significant increase in HTR-8 cells invading through matrigel coated membrane compared with controls. TGFβ-1 (as positive control) completely inhibited invasion of HTR-8 cells. HtrA3 is tightly regulated during decidualization of HESC in vitro. Inhibition of HtrA3 activity in trophoblastic HTR-8 cells increased invasiveness supporting its functional role during placental development.


2015 ◽  
Vol 112 (36) ◽  
pp. E5098-E5107 ◽  
Author(s):  
Jia Peng ◽  
Diana Monsivais ◽  
Ran You ◽  
Hua Zhong ◽  
Stephanie A. Pangas ◽  
...  

Members of the transforming growth factor β (TGF-β) superfamily are key regulators in most developmental and physiological processes. However, the in vivo roles of TGF-β signaling in female reproduction remain uncertain. Activin receptor-like kinase 5 (ALK5) is the major type 1 receptor for the TGF-β subfamily. Absence of ALK5 leads to early embryonic lethality because of severe defects in vascular development. In this study, we conditionally ablated uterine ALK5 using progesterone receptor-cre mice to define the physiological roles of ALK5 in female reproduction. Despite normal ovarian functions and artificial decidualization in conditional knockout (cKO) mice, absence of uterine ALK5 resulted in substantially reduced female reproduction due to abnormalities observed at different stages of pregnancy, including implantation defects, disorganization of trophoblast cells, fewer uterine natural killer (uNK) cells, and impairment of spiral artery remodeling. In our microarray analysis, genes encoding proteins involved in cytokine–cytokine receptor interactions and NK cell-mediated cytotoxicity were down-regulated in cKO decidua compared with control decidua. Flow cytometry confirmed a 10-fold decrease in uNK cells in cKO versus control decidua. According to these data, we hypothesize that TGF-β acts on decidual cells via ALK5 to induce expression of other growth factors and cytokines, which are key regulators in luminal epithelium proliferation, trophoblast development, and uNK maturation during pregnancy. Our findings not only generate a mouse model to study TGF-β signaling in female reproduction but also shed light on the pathogenesis of many pregnancy complications in human, such as recurrent spontaneous abortion, preeclampsia, and intrauterine growth restriction.


Author(s):  
Nikolaos Sofikitis ◽  
Aris Kaltsas ◽  
Fotios Dimitriadis ◽  
Jens Rassweiler ◽  
Nikolaos Grivas ◽  
...  

The therapeutic range of cyclic nucleotide phosphodiesterase 5 inhibitors (PDE5) inhibitors is getting wider in the last years. This review study focuses on the potential employment of PDE5 inhibitors as an adjunct tool for the therapeutic management of male infertility. The literature tends to suggest a beneficial effect of PDE5 inhibitors on Leydig and Sertoli cells secretory function. It also appears that PDE5 inhibitors play a role in the regulation of the contractility of the testicular tunica albuginea and the epididymis. Moreover scientific data suggest that PDE5 inhibitors enhance the prostatic secretory function leading to an improvement in sperm motility. Other studies additionally demonstrate a role of PDE5 inhibitors in the regulation of sperm capacitation process. Placebo-controlled, randomized, blind studies are necessary to unambiguously incorporate PDE5 inhibitors as an adjunct tool for the pharmaceutical treatment of semen disorders and male infertility.


2021 ◽  
Vol 22 (15) ◽  
pp. 7826
Author(s):  
Luca Zangrandi ◽  
Claudia Schmuckermair ◽  
Hussein Ghareh ◽  
Federico Castaldi ◽  
Regine Heilbronn ◽  
...  

The metabotropic glutamate receptor type 5 (mGluR5) has been proposed to play a crucial role in the selection and regulation of cognitive, affective, and emotional behaviors. However, the mechanisms by which these receptors mediate these effects remain largely unexplored. Here, we studied the role of mGluR5 located in D1 receptor-expressing (D1) neurons in the manifestation of different behavioral expressions. Mice with conditional knockout (cKO) of mGluR5 in D1 neurons (mGluR5D1 cKO) and littermate controls displayed similar phenotypical profiles in relation to memory expression, anxiety, and social behaviors. However, mGluR5D1 cKO mice presented different coping mechanisms in response to acute escapable or inescapable stress. mGluR5D1 cKO mice adopted an enhanced active stress coping strategy upon exposure to escapable stress in the two-way active avoidance (TWA) task and a greater passive strategy upon exposure to inescapable stress in the forced swim test (FST). In summary, this work provides evidence for a functional integration of the dopaminergic and glutamatergic system to mediate control over internal states upon stress exposure and directly implicates D1 neurons and mGluR5 as crucial mediators of behavioral stress responses.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1877
Author(s):  
Gilles Lalmanach ◽  
Mariana Kasabova-Arjomand ◽  
Fabien Lecaille ◽  
Ahlame Saidi

Alongside its contribution in maintaining skin homeostasis and its probable involvement in fetal and placental development, cystatin M/E (also known as cystatin 6) was first described as a tumor suppressor of breast cancer. This review aims to provide an update on cystatin M/E with particular attention paid to its role during tumorigenesis. Cystatin M/E, which is related to type 2 cystatins, displays the unique property of being a dual tight-binding inhibitor of both legumain (also known as asparagine endopeptidase) and cysteine cathepsins L, V and B, while its expression level is epigenetically regulated via the methylation of the CST6 promoter region. The tumor-suppressing role of cystatin M/E was further reported in melanoma, cervical, brain, prostate, gastric and renal cancers, and cystatin M/E was proposed as a biomarker of prognostic significance. Contrariwise, cystatin M/E could have an antagonistic function, acting as a tumor promoter (e.g., oral, pancreatic cancer, thyroid and hepatocellular carcinoma). Taking into account these apparently divergent functions, there is an urgent need to decipher the molecular and cellular regulatory mechanisms of the expression and activity of cystatin M/E associated with the safeguarding homeostasis of the proteolytic balance as well as its imbalance in cancer.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 644
Author(s):  
Agata M. Parsons ◽  
Gerrit J. Bouma

Successful pregnancy requires the establishment of a highly regulated maternal–fetal environment. This is achieved through the harmonious regulation of steroid hormones, which modulate both maternal and fetal physiology, and are critical for pregnancy maintenance. Defects in steroidogenesis and steroid signaling can lead to pregnancy disorders or even fetal loss. The placenta is a multifunctional, transitory organ which develops at the maternal–fetal interface, and supports fetal development through endocrine signaling, the transport of nutrients and gas exchange. The placenta has the ability to adapt to adverse environments, including hormonal variations, trying to support fetal development. However, if placental function is impaired, or its capacity to adapt is exceeded, fetal development will be compromised. The goal of this review is to explore the relevance of androgens and androgen signaling during pregnancy, specifically in placental development and function. Often considered a mere precursor to placental estrogen synthesis, the placenta in fact secretes androgens throughout pregnancy, and not only contains the androgen steroid nuclear receptor, but also non-genomic membrane receptors for androgens, suggesting a role of androgen signaling in placental function. Moreover, a number of pregnancy disorders, including pre-eclampsia, gestational diabetes, intrauterine growth restriction, and polycystic ovarian syndrome, are associated with abnormal androgen levels and androgen signaling. Understanding the role of androgens in the placenta will provide a greater understanding of the pathophysiology of pregnancy disorders associated with androgen elevation and its consequences.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 554
Author(s):  
Natália Salomão ◽  
Michelle Brendolin ◽  
Kíssila Rabelo ◽  
Mayumi Wakimoto ◽  
Ana Maria de Filippis ◽  
...  

Intrauterine transmission of the Chikungunya virus (CHIKV) during early pregnancy has rarely been reported, although vertical transmission has been observed in newborns. Here, we report four cases of spontaneous abortion in women who became infected with CHIKV between the 11th and 17th weeks of pregnancy. Laboratorial confirmation of the infection was conducted by RT-PCR on a urine sample for one case, and the other three were by detection of IgM anti-CHIKV antibodies. Hematoxylin and eosin (H&E) staining and an electron microscopy assay allowed us to find histopathological, such as inflammatory infiltrate in the decidua and chorionic villi, as well as areas of calcification, edema and the deposition of fibrinoid material, and ultrastructural changes, such as mitochondria with fewer cristae and ruptured membranes, endoplasmic reticulum with dilated cisterns, dispersed chromatin in the nuclei and the presence of an apoptotic body in case 1. In addition, by immunohistochemistry (IHC), we found a positivity for the anti-CHIKV antibody in cells of the endometrial glands, decidual cells, syncytiotrophoblasts, cytotrophoblasts, Hofbauer cells and decidual macrophages. Electron microscopy also helped in identifying virus-like particles in the aborted material with a diameter of 40–50 nm, which was consistent with the size of CHIKV particles in the literature. Our findings in this study suggest early maternal fetal transmission, adding more evidence on the role of CHIKV in fetal death.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Hua Yang ◽  
Mengjie Zhang ◽  
Jiahao Shi ◽  
Yunhe Zhou ◽  
Zhipeng Wan ◽  
...  

Several studies have associated reduced expression of synaptosomal-associated protein of 25 kDa (SNAP-25) with schizophrenia, yet little is known about its role in the illness. In this paper, a forebrain glutamatergic neuron-specific SNAP-25 knockout mouse model was constructed and studied to explore the possible pathogenetic role of SNAP-25 in schizophrenia. We showed that SNAP-25 conditional knockout (cKO) mice exhibited typical schizophrenia-like phenotype. A significantly elevated extracellular glutamate level was detected in the cerebral cortex of the mouse model. Compared with Ctrls, SNAP-25 was dramatically reduced by about 60% both in cytoplasm and in membrane fractions of cerebral cortex of cKOs, while the other two core members of SNARE complex: Syntaxin-1 (increased ~80%) and Vamp2 (increased ~96%) were significantly increased in cell membrane part. Riluzole, a glutamate release inhibitor, significantly attenuated the locomotor hyperactivity deficits in cKO mice. Our findings provide in vivo functional evidence showing a critical role of SNAP-25 dysfunction on synaptic transmission, which contributes to the developmental of schizophrenia. It is suggested that a SNAP-25 cKO mouse, a valuable model for schizophrenia, could address questions regarding presynaptic alterations that contribute to the etiopathophysiology of SZ and help to consummate the pre- and postsynaptic glutamatergic pathogenesis of the illness.


Endocrinology ◽  
2018 ◽  
Vol 159 (6) ◽  
pp. 2459-2472 ◽  
Author(s):  
Yan Yin ◽  
Adam Wang ◽  
Li Feng ◽  
Yu Wang ◽  
Hong Zhang ◽  
...  

Abstract To prepare for embryo implantation, the uterus must undergo a series of reciprocal interactions between the uterine epithelium and the underlying stroma, which are orchestrated by ovarian hormones. During this process, multiple signaling pathways are activated to direct cell proliferation and differentiation, which render the uterus receptive to the implanting blastocysts. One important modulator of these signaling pathways is the cell surface and extracellular matrix macromolecules, heparan sulfate proteoglycans (HSPGs). HSPGs play crucial roles in signal transduction by regulating morphogen transport and ligand binding. In this study, we examine the role of HSPG sulfation in regulating uterine receptivity by conditionally deleting the N-deacetylase/N-sulfotransferase (NDST) 1 gene (Ndst1) in the mouse uterus using the Pgr-Cre driver, on an Ndst2- and Ndst3-null genetic background. Although development of the female reproductive tract and subsequent ovarian function appear normal in Ndst triple-knockout females, they are infertile due to implantation defects. Embryo attachment appears to occur but the uterine epithelium at the site of implantation persists rather than disintegrates in the mutant. Uterine epithelial cells continued to proliferate past day 4 of pregnancy, accompanied by elevated Fgf2 and Fgf9 expression, whereas uterine stroma failed to undergo decidualization, as evidenced by lack of Bmp2 induction. Despite normal Indian hedgehog expression, transcripts of Ptch1 and Gli1, both components as well as targets of the hedgehog (Hh) pathway, were detected only in the subepithelial stroma, indicating altered Hh signaling in the mutant uterus. Taken together, these data implicate an essential role for HSPGs in modulating signal transduction during mouse implantation.


Sign in / Sign up

Export Citation Format

Share Document