Genomics, Population Genetics and Evolutionary History of Plasmodium vivax

Author(s):  
Jane M. Carlton ◽  
Aparup Das ◽  
Ananias A. Escalante
2016 ◽  
Author(s):  
Kimberly F. McManus ◽  
Angela Taravella ◽  
Brenna Henn ◽  
Carlos D. Bustamante ◽  
Martin Sikora ◽  
...  

AbstractThe human DARC (Duffy antigen receptor for chemokines) gene encodes a membrane-bound chemokine receptor crucial for the infection of red blood cells by Plasmodium vivax, a major causative agent of malaria. Of the three major allelic classes segregating in human populations, the FY*O allele has been shown to protect against P. vivax infection and is near fixation in sub-Saharan Africa, while FY*B and FY*A are common in Europe and Asia, respectively. Due to the combination of its strong geographic differentiation and association with malaria resistance, DARC is considered a canonical example of a locus under positive selection in humans.Here, we use sequencing data from over 1,000 individuals in twenty-one human populations, as well as ancient human and great ape genomes, to analyze the fine scale population structure of DARC. We estimate the time to most recent common ancestor (TMRCA) of the FY*O mutation to be 42 kya (95% CI: 34–49 kya). We infer the FY*O null mutation swept to fixation in Africa from standing variation with very low initial frequency (0.1%) and a selection coefficient of 0.043 (95% CI:0.011–0.18), which is among the strongest estimated in the genome. We estimate the TMRCA of the FY*A mutation to be 57 kya (95% CI: 48–65 kya) and infer that, prior to the sweep of FY*O, all three alleles were segregating in Africa, as highly diverged populations from Asia and ≠Khomani San hunter-gatherers share the same FY*A haplotypes. We test multiple models of admixture that may account for this observation and reject recent Asian or European admixture as the cause.Author SummaryInfectious diseases have undoubtedly played an important role in ancient and modern human history. Yet, there are relatively few regions of the genome involved in resistance to pathogens that have shown a strong selection signal. We revisit the evolutionary history of a gene associated with resistance to the most common malaria-causing parasite, Plasmodium vivax, and show that it is one of regions of the human genome that has been under strongest selective pressure in our evolutionary history (selection coefficient: 5%). Our results are consistent with a complex evolutionary history of the locus involving selection on a mutation that was at a very low frequency in the ancestral African population (standing variation) and a large differentiation between European, Asian and African populations.


2018 ◽  
Vol 8 (23) ◽  
pp. 12056-12065
Author(s):  
Salinda Sandamal ◽  
Asanka Tennakoon ◽  
Qing-Lin Meng ◽  
Buddhi Marambe ◽  
Disna Ratnasekera ◽  
...  

2013 ◽  
Vol 30 (9) ◽  
pp. 2050-2064 ◽  
Author(s):  
Jesse E. Taylor ◽  
M. Andreína Pacheco ◽  
David J. Bacon ◽  
Mohammad A. Beg ◽  
Ricardo Luiz Machado ◽  
...  

2019 ◽  
Vol 45 (6) ◽  
pp. 1119-1141
Author(s):  
Venla Oikkonen

The study of ancient DNA (aDNA) has gained increasing attention in science and society as a tool for tracing hominin evolution. While aDNA research overlaps with the history of population genetics, it embodies a specific configuration of technology, temporality, temperature, and place that, this article suggests, cannot be fully unpacked with existing science and technology studies approaches to population genetics. This article explores this configuration through the 2010 discovery of the Denisovan hominin based on aDNA retrieved from a finger bone and tooth in Siberia. The analysis explores how the Denisovan was enacted as a technoscientific object through the cool and even temperatures of Denisova Cave, assumptions about the connection between individual and population, the status of populations as evolutionary entities, and underlying colonialist and imperialist imaginaries of Siberia and Melanesia. The analysis sheds light on how aDNA research is changing the parameters within which evolutionary history is imagined and conceptualized. Through the case study, it also outlines some ways in which the specific technoscientific and cultural entanglements of aDNA can be critically explored.


Sign in / Sign up

Export Citation Format

Share Document