scholarly journals The Evolutionary History of Plasmodium vivax as Inferred from Mitochondrial Genomes: Parasite Genetic Diversity in the Americas

2013 ◽  
Vol 30 (9) ◽  
pp. 2050-2064 ◽  
Author(s):  
Jesse E. Taylor ◽  
M. Andreína Pacheco ◽  
David J. Bacon ◽  
Mohammad A. Beg ◽  
Ricardo Luiz Machado ◽  
...  
Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 737
Author(s):  
Issiaka Bagayoko ◽  
Marcos Giovanni Celli ◽  
Gustavo Romay ◽  
Nils Poulicard ◽  
Agnès Pinel-Galzi ◽  
...  

The rice stripe necrosis virus (RSNV) has been reported to infect rice in several countries in Africa and South America, but limited genomic data are currently publicly available. Here, eleven RSNV genomes were entirely sequenced, including the first corpus of RSNV genomes of African isolates. The genetic variability was differently distributed along the two genomic segments. The segment RNA1, within which clusters of polymorphisms were identified, showed a higher nucleotidic variability than did the beet necrotic yellow vein virus (BNYVV) RNA1 segment. The diversity patterns of both viruses were similar in the RNA2 segment, except for an in-frame insertion of 243 nucleotides located in the RSNV tgbp1 gene. Recombination events were detected into RNA1 and RNA2 segments, in particular in the two most divergent RSNV isolates from Colombia and Sierra Leone. In contrast to BNYVV, the RSNV molecular diversity had a geographical structure with two main RSNV lineages distributed in America and in Africa. Our data on the genetic diversity of RSNV revealed unexpected differences with BNYVV suggesting a complex evolutionary history of the genus Benyvirus.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 113
Author(s):  
Sergey Alkhovsky ◽  
Sergey Lenshin ◽  
Alexey Romashin ◽  
Tatyana Vishnevskaya ◽  
Oleg Vyshemirsky ◽  
...  

We found and genetically described two novel SARS-like coronaviruses in feces and oral swabs of the greater (R. ferrumequinum) and the lesser (R. hipposideros) horseshoe bats in southern regions of Russia. The viruses, named Khosta-1 and Khosta-2, together with related viruses from Bulgaria and Kenya, form a separate phylogenetic lineage. We found evidence of recombination events in the evolutionary history of Khosta-1, which involved the acquisition of the structural proteins S, E, and M, as well as the nonstructural genes ORF3, ORF6, ORF7a, and ORF7b, from a virus that is related to the Kenyan isolate BtKY72. The examination of bats by RT-PCR revealed that 62.5% of the greater horseshoe bats in one of the caves were positive for Khosta-1 virus, while its overall prevalence was 14%. The prevalence of Khosta-2 was 1.75%. Our results show that SARS-like coronaviruses circulate in horseshoe bats in the region, and we provide new data on their genetic diversity.


2020 ◽  
Vol 66 (3-4) ◽  
pp. 142-150
Author(s):  
Jessica Worthington Wilmer ◽  
Andrew P. Amey ◽  
Carmel McDougall ◽  
Melanie Venz ◽  
Stephen Peck ◽  
...  

Sclerophyll woodlands and open forests once covered vast areas of eastern Australia, but have been greatly fragmented and reduced in extent since European settlement. The biogeographic and evolutionary history of the biota of eastern Australia’s woodlands also remains poorly known, especially when compared to rainforests to the east, or the arid biome to the west. Here we present an analysis of patterns of mitochondrial genetic diversity in two species of Pygopodid geckos with distributions centred on the Brigalow Belt Bioregion of eastern Queensland. One moderately large and semi-arboreal species, Paradelma orientalis, shows low genetic diversity and no clear geographic structuring across its wide range. In contrast a small and semi-fossorial species, Delma torquata, consists of two moderately divergent clades, one from the ranges and upland of coastal areas of south-east Queensland, and other centred in upland areas further inland. These data point to varying histories of geneflow and refugial persistance in eastern Australia’s vast but now fragmented open woodlands. The Carnarvon Ranges of central Queensland are also highlighted as a zone of persistence for cool and/or wet-adapted taxa, however the evolutionary history and divergence of most outlying populations in these mountains remains unstudied.


2010 ◽  
Vol 28 (1) ◽  
pp. 615-623 ◽  
Author(s):  
A. Bjork ◽  
W. Liu ◽  
J. O. Wertheim ◽  
B. H. Hahn ◽  
M. Worobey

2016 ◽  
Vol 65 ◽  
pp. 245-252 ◽  
Author(s):  
Swapnil M. Patil ◽  
Niraj R. Rane ◽  
Avinash A. Adsul ◽  
Avinash R. Gholave ◽  
Shrirang R. Yadav ◽  
...  

Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 401-412 ◽  
Author(s):  
Peter Tiffin ◽  
Brandon S Gaut

Abstract Polyploidy has been an extremely common phenomenon in the evolutionary history of angiosperms. Despite this there are few data available to evaluate the effects of polyploidy on genetic diversity and to compare the relative effects of drift and selection in polyploids and related diploids. We investigated DNA sequence diversity at four nuclear loci (adh1, glb1, c1, and waxy) from the tetraploid Zea perennis and the closely related diploid Z. diploperennis. Contrary to expectations, we detected no strong evidence for greater genetic diversity in the tetraploid, or for consistent differences in the effects of either drift or selection between the tetraploid and the diploid. Our failure to find greater genetic diversity in Z. perennis may result from its relatively recent origin or demographic factors associated with its origin. In addition to comparing genetic diversity in the two species, we constructed genealogies to infer the evolutionary origin of Z. perennis. Although these genealogies are equivocal regarding the mode of origin, several aspects of these genealogies support an autotetraploid origin. Consistent with previous molecular data the genealogies do not, however, support the division of Zea into two sections, the section Zea and the section Luxuriantes.


2020 ◽  
Author(s):  
Dong Zhang ◽  
Hong Zou ◽  
Jin Zhang ◽  
Gui-Tang Wang ◽  
Ivan Jakovlić

AbstractInversions of the origin of replication (ORI) of mitochondrial genomes produce asymmetrical mutational pressures that can cause artefactual clustering in phylogenetic analyses. It is therefore an absolute prerequisite for all molecular evolution studies that use mitochondrial data to account for ORI events in the evolutionary history of their dataset. The number of ORI events in crustaceans remains unknown; several studies reported ORI events in some crustacean lineages on the basis of fully inversed (e.g. negative vs. positive) GC skew patterns, but studies of isolated lineages could have easily overlooked ORI events that produced merely a reduction in the skew magnitude. In this study, we used a comprehensive taxonomic approach to systematically study the evolutionary history of ORI events in crustaceans using all available mitogenomes and combining signals from lineage-specific skew magnitude and direction (+ or -), cumulative skew diagrams, and gene rearrangements. We inferred 24 putative ORI events (14 of which have not been proposed before): 17 with relative confidence, and 7 speculative. Most of these were located at lower taxonomic levels, but there are indications of ORIs that occurred at or above the order-level: Copepoda, Isopoda, and putatively in Branchiopoda and Poecilostomatida+Cyclopoida. Several putative ORI events did not result in fully inversed skews. In many lineages skew plots were not informative for the prediction of replication origin and direction of mutational pressures, but inversions of the mitogenome fragment comprising the ancestral CR (rrnS-CR-trnI) were rather good predictors of skew inversions. We also found that skew plots can be a useful tool to indirectly infer the relative strengths of mutational/purifying pressures in some crustacean lineages: when purifying pressures outweigh mutational, GC skew plots are strongly affected by the strand distribution of genes, and when mutational > purifying, GC skew plots can be even completely (apparently) unaffected by the strand distribution of genes. This observation has very important repercussions for phylogenetic and evolutionary studies, as it implies that not only the relatively rare ORI events, but also much more common gene strand switches and same-strand rearrangements can produce mutational bursts, which in turn affect phylogenetic and evolutionary analyses. We argue that such compositional biases may produce misleading signals not only in phylogenetic but also in other types of evolutionary analyses (dN/dS ratios, codon usage bias, base composition, branch length comparison, etc.), and discuss several such examples. Therefore, all studies aiming to study the evolution of mtDNA sequences should pay close attention to architectural rearrangements.


2021 ◽  
Author(s):  
Sergey V Alkhovsky ◽  
Sergey V Lenshin ◽  
Alexey V Romashin ◽  
Tatyana V Vishnevskaya ◽  
Oleg I Vyshemirsky ◽  
...  

We found and genetically described two novel SARS-like coronaviruses in feces and oral swabs of the great (R. ferrumequinum) and the lesser (R. hipposideros) horseshoe bats in southern region of Russia. The viruses, named Khosta-1 and Khosta-2, together with related viruses from Bulgaria and Kenya, form a separate phylogenetic lineage. We found an evidence of recombination events in evolutionary history of Khosta-1, which involved the acquisition of structural proteins S, E, and M as well as nonstructural genes ORF3, ORF6, ORF7a, and ORF7b from a virus that is closely related to Kenyan isolate BtKY72. Examination of bats by RT-PCR revealed that 62,5% of great horseshoe bats in one of the caves were positive for Khosta-1 virus while its overall prevalence was 14%. The prevalence of Khosta-2 was 1,75%. Our results show that SARS-like coronaviruses circulate in horseshoe bats in the region and provide a new data on their genetic diversity.


Sign in / Sign up

Export Citation Format

Share Document