scholarly journals Population genetics and evolutionary history of the wild rice species Oryza rufipogon and O. nivara in Sri Lanka

2018 ◽  
Vol 8 (23) ◽  
pp. 12056-12065
Author(s):  
Salinda Sandamal ◽  
Asanka Tennakoon ◽  
Qing-Lin Meng ◽  
Buddhi Marambe ◽  
Disna Ratnasekera ◽  
...  
2020 ◽  
Vol 61 (11) ◽  
pp. 1850-1859 ◽  
Author(s):  
Tomonobu Toyomasu ◽  
Matthew R Shenton ◽  
Kazunori Okada

Abstract Gibberellins (GAs) are labdane-related diterpenoid phytohormones that regulate various aspects of higher plant growth. A biosynthetic intermediate of GAs is ent-kaurene, a tetra-cyclic diterpene that is produced through successive cyclization of geranylgeranyl diphosphate catalyzed by the two distinct monofunctional diterpene synthases—ent-copalyl diphosphate synthase (ent-CPS) and ent-kaurene synthase (KS). Various homologous genes of the two diterpene synthases have been identified in cereals, including rice (Oryza sativa), wheat (Triticum aestivum) and maize (Zea mays), and are believed to have been derived from GA biosynthetic ent-CPS and KS genes through duplication and neofunctionalization. They play roles in specialized metabolism, giving rise to diverse labdane-related diterpenoids for defense because a variety of diterpene synthases generate diverse carbon-skeleton structures. This review mainly describes the diterpene synthase homologs that have been identified and characterized in rice, wheat and maize and shows the evolutionary history of various homologs in rice inferred by comparative genomics studies using wild rice species, such as Oryza rufipogon and Oryza brachyantha. In addition, we introduce labdane-related diterpene synthases in bryophytes and gymnosperms to illuminate the macroscopic evolutionary history of diterpene synthases in the plant kingdom—bifunctional enzymes possessing both CPS and KS activities are present in bryophytes; gymnosperms possess monofunctional CPS and KS responsible for GA biosynthesis and also possess bifunctional diterpene synthases facilitating specialized metabolism for defense.


2004 ◽  
Vol 7 (3) ◽  
pp. 252-259 ◽  
Author(s):  
Chisato Masumoto ◽  
Takashige Ishii ◽  
Sono Kataoka ◽  
Tomoko Hatanaka ◽  
Naotsugu Uchida

Genome ◽  
2011 ◽  
Vol 54 (8) ◽  
pp. 629-638 ◽  
Author(s):  
Z. Xu ◽  
S. Rafi ◽  
W. Ramakrishna

Retrotransposons are ubiquitous in higher plant genomes. The presence or absence of retrotransposons in whole genome and high throughput genomic sequence (HTGS) from cultivated and wild rice was investigated to understand the organization and evolution of retrotransposon insertions in promoter regions. Approximately half of the Oryza sativa subsp. japonica ‘Nipponbare’ promoters with retrotransposons conserved in Oryza sativa subsp. indica ‘93-11’ and four wild rice species showed higher sequence conservation in retrotransposon than nonretrotransposon regions. We further investigated, in detail, the evolutionary dynamics of five retrotransposons in the promoter regions of 95 rice genotypes. Our data suggest that four of five insertions (Rp2–Rp5) occurred in the ancestor of AA genome, while the other insertion (Rp1) predates the ancestral divergence of Oryza officinalis (CC genome). Four retrotransposons (Rp2–Rp5) were present in 52% (Rp2), 29% (Rp3), 53% (Rp4), and 43% (Rp5) of the rice genotypes with AA genome type, and the fifth retrotransposon (Rp1) was present in 95% of the rice genotypes with AA, BBCC, or CC genome types. Furthermore, most of these retrotransposons were found to evolve slower than flanking promoter regions, suggesting a role in promoter function for regulating downstream genes.


2016 ◽  
Vol 480 (3) ◽  
pp. 402-408 ◽  
Author(s):  
Tomonobu Toyomasu ◽  
Koji Miyamoto ◽  
Matthew R. Shenton ◽  
Arisa Sakai ◽  
Chizu Sugawara ◽  
...  

2021 ◽  
Author(s):  
Shyama R. Weerakoon

Rice is the staple food crop in Sri Lanka, which occupies 34% (0.77/million ha) of the total cultivated area. Sri Lanka currently produces 2.7 million tonnes of rough rice annually and satisfies around 95% of the domestic requirement. In Sri Lanka, genus Oryza consists of two species complexes, O. sativa (AA) and O. officinalis (CC). These two complexes are both pan tropical and have very similar overall distribution. Five wild rice species are reported in Sri Lanka, (O. nivara [AA], O. rufipogan (AA) O. eichengeri [CC], O. rhizomatis (CC) and O. granulate (GG). O. rhizomatis has been reported only in Sri Lanka and considered endemic to Sri Lanka. Recent studies demonstrated, the reliance on single source of information could mislead results in the phylogenetic inferences due to analytical inconsistency and biological processes. Therefore, exact number of wild rice species in Sri Lanka becomes uncertain and the necessity arises to assess Oryza species complexes in Sri Lanka using morphological, anatomical, and molecular information to enumerate number of species within each Oryza complex and characterization of species and species complexes. The study revealed, characterization of wild rice species, to a certain extent, can be made through morphological and anatomical characters, specially lamina anatomical characters. Molecular information is more reliable in delimitation of wild rice species complexes in Sri Lanka. O. rhizomatis and O. eichingeri (CC) are well separated from the rest of wild rice species (AA). Molecular data revealed, O. nivara and O. rufipogon have undergone independent evolution within Sri Lanka. Well separated five wild rice species are existing in Sri Lanka. Studies on ecological resilience of morphological, anatomical, and molecular studies are very useful for species enumeration of wild rice complexes in Sri Lanka. The findings led to conclude that wild rice species in Sri Lanka are “ecological swarms” and represents allopatric or sympatric populations. A comprehensive knowledge on genetic diversity and population structure of wild rice germplasm in Sri Lanka provides useful information to include these locally adapted and evolved wild rice species in rice crop improvement/breeding.


2021 ◽  
Vol 22 (10) ◽  
Author(s):  
SITI YURIYAH ◽  
DEDY DARNAEDI ◽  
TATANG MITRA SETIA ◽  
GUT WINDARSIH ◽  
Dwinita Wikan Utami

Abstract. Yuriyah S, Darnaedi D, Setia TM, Windarsih G, Utami DW. 2021. Phenotype and genotype variability of interspecific rice lines related to bacterial leaf blight resistance (Xanthomonas oryzae pv. oryzae) character. Biodiversitas 22: 4123-4130. Wild rice species are the source of the gene pool for rice genetic diversity. The cross-species crosses (interspecific crosses) play an important role in breeding, namely in terms of expanding the diversity of desirable characters, such as disease resistance and improvement in yield potential. Currently, the genes from wild rice species have been successfully introgressed into cultivated rice so that they can overcome the rice production constraints, including the introgression of genes for the bacterial leaf blight (BLB) resistance. The purpose of this study was to analyze the variability of phenotype and genotype performance of lines derived from wild rice species for the character of resistance to BLB disease. A total of 33 selected backcross lines derived from wild rice species of O. rufipogon and O. glaberrima as the donor parents and 2 control varieties (resistant and susceptible to BLB disease), were used in this study. The evaluation of phenotype and genotype of resistance characters to BLB disease was carried out during a vegetative phase of the plant. The resistance evaluation was carried out in a greenhouse, while the genotype performance was analyzed using 4 STS markers linked to Xa4, Xa7, and Xa13 genes. The result of the phenotype evaluation showed that there were variations among the resistance of the tested lines. Three lines derived from a Situ Bagendit/Oryza rufipogon cross were resistant to all BLB races used in the testing. Those three lines indicated to have the allele of the Xa7 resistance gene based on the genotype performance which grouped with the Code variety that had the Xa7 resistance gene.


Sign in / Sign up

Export Citation Format

Share Document