scholarly journals GTP-Binding Proteins and Formation of Secretory Vesicles

Author(s):  
ANJA LEYTE ◽  
FRANCIS A. BARR ◽  
WIELAND B. HUTTNER ◽  
SHARON A. TOOZE
1999 ◽  
Vol 10 (3) ◽  
pp. 284-306 ◽  
Author(s):  
E.L. Watson

Regulated exocytosis, which occurs in response to stimuli, is a two-step process involving the docking of secretory granules (SGs) at specific sites on the plasma membrane (PM), with subsequent fusion and release of granule contents. This process plays a crucial role in a number of tissues, including exocrine glands, chromaffin cells, platelets, and mast cells. Over the years, our understanding of the proteins involved in vesicular trafficking has increased dramatically. Evidence from genetic, biochemical, immunological, and functional assays supports a role for ras-like monomeric GTP-binding proteins (smgs) as well as heterotrimeric GTP-binding protein (G-protein) subunits in various steps of the vesicular trafficking pathway, including the transport of secretory vesicles to the PM. Data suggest that the function of GTP-binding proteins is likely related to their localization to specific cellular compartments. The presence of both G-proteins and smgs on secretory vesicles/granules implicates a role for these proteins in the final stages of exocytosis. Molecular mechanisms of exocytosis have been postulated, with the identification of a number of proteins that modify, regulate, and interact with GTP-binding proteins, and with the advent of approaches that assess the functional importance of GTP-binding proteins in downstream, exocytotic events. Further, insight into vesicle targeting and fusion has come from the characterization of a SNAP receptor (SNARE) complex composed of vesicle, PM, and soluble membrane trafficking components, and identification of a functional linkage between GTP-binding and SNARES.


1993 ◽  
Vol 4 (7) ◽  
pp. 747-756 ◽  
Author(s):  
J K Ngsee ◽  
A M Fleming ◽  
R H Scheller

Low molecular weight (LMW) GTP-binding proteins are hypothesized to play a role in the vectorial transport of intracellular vesicles. Mutational studies in yeast and subcellular localization in mammalian cells suggest that a family of LMW GTP-binding proteins, termed rab, target intracellular vesicles to their appropriate acceptor compartment. In this report, we demonstrate that an elasmobranch homologue of rab3A, o-rab3, plays a significant role in the sequestration of regulated secretory vesicles. When transfected into the murine endocrine cell line AtT-20, the wild-type o-rab3 protein is localized exclusively to the tips of the processes, a region of the cell known to accumulate proteins associated with regulated secretory vesicles. Two mutations, Gln81 to Leu (Q81L) and Asn135 Ile (N135I), which alter GTP binding or rate of hydrolysis, blocked the localization of the o-rab3 protein to the tips of cell processes. These mutations also hindered the sequestration of ACTH-containing secretory vesicles to the process tips but did not affect the basal or stimulated release of ACTH. Moreover, the sequestration of the protein VAMP to the process tip was also hindered by the mutation. The results demonstrate a role for the rab3 proteins in localization, sequestration, and storage of secretory vesicles near their release site.


1999 ◽  
Vol 82 (09) ◽  
pp. 1177-1181 ◽  
Author(s):  
Hubert de Leeuw ◽  
Pauline Wijers-Koster ◽  
Jan van Mourik ◽  
Jan Voorberg

SummaryIn endothelial cells von Willebrand factor (vWF) and P-selectin are stored in dense granules, so-called Weibel-Palade bodies. Upon stimulation of endothelial cells with a variety of agents including thrombin, these organelles fuse with the plasma membrane and release their content. Small GTP-binding proteins have been shown to control release from intracellular storage pools in a number of cells. In this study we have investigated whether small GTP-binding proteins are associated with Weibel-Palade bodies. We isolated Weibel-Palade bodies by centrifugation on two consecutive density gradients of Percoll. The dense fraction in which these subcellular organelles were highly enriched, was analysed by SDS-PAGE followed by GTP overlay. A distinct band with an apparent molecular weight of 28,000 was observed. Two-dimensional gel electrophoresis followed by GTP overlay revealed the presence of a single small GTP-binding protein with an isoelectric point of 7.1. A monoclonal antibody directed against RalA showed reactivity with the small GTP-binding protein present in subcellular fractions that contain Weibel-Palade bodies. The small GTPase RalA was previously identified on dense granules of platelets and on synaptic vesicles in nerve terminals. Our observations suggest that RalA serves a role in regulated exocytosis of Weibel-Palade bodies in endothelial cells.


1998 ◽  
Vol 79 (04) ◽  
pp. 832-836 ◽  
Author(s):  
Thomas Fischer ◽  
Christina Duffy ◽  
Gilbert White

SummaryPlatelet membrane glycoproteins (GP) IIb/IIIa and rap1b, a 21 kDa GTP binding protein, associate with the triton-insoluble, activation-dependent platelet cytoskeleton with similar rates and divalent cation requirement. To examine the possibility that GPIIb/IIIa was required for rap1b association with the cytoskeleton, experiments were performed to determine if the two proteins were linked under various conditions. Chromatography of lysates from resting platelets on Sephacryl S-300 showed that GPIIb/IIIa and rap1b were well separated and distinct proteins. Immunoprecipitation of GPIIb/IIIa from lysates of resting platelets did not produce rap1b or other low molecular weight GTP binding proteins and immunoprecipitation of rap1b from lysates of resting platelets did not produce GPIIb/IIIa. Finally, rap1b was associated with the activation-dependent cytoskeleton of platelets from a patient with Glanzmann’s thrombasthenia who lacks surface expressed glycoproteins IIb and IIIa. Based on these findings, we conclude that no association between GPIIb/IIIa and rap1b is found in resting platelets and that rap1b association with the activation-dependent cytoskeleton is at least partly independent of GPIIb/IIIa.


Sign in / Sign up

Export Citation Format

Share Document