Estimation of Short-Term Energy Expenditure by the Labeled Bicarbonate Method

Author(s):  
M. Elia
2015 ◽  
Vol 30 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Stefano Guidotti ◽  
Berthe M. A. A. A. Verstappen-Dumoulin ◽  
Henk G. Jansen ◽  
Anita T. Aerts-Bijma ◽  
André A. van Vliet ◽  
...  

Metabolism ◽  
2007 ◽  
Vol 56 (2) ◽  
pp. 289-295 ◽  
Author(s):  
Lisa A. Kosmiski ◽  
Daniel H. Bessesen ◽  
Sarah A. Stotz ◽  
John R. Koeppe ◽  
Tracy J. Horton

2015 ◽  
Vol 40 (4) ◽  
pp. 401-406 ◽  
Author(s):  
Daniel L. Kresge ◽  
Kathleen Melanson

Chewing has been associated with improved satiation and satiety, but little is known about the metabolic impact of gum chewing. We tested the hypothesis that gum chewing would increase energy expenditure (EE) and reduce respiratory exchange ratio (RER) before and after a controlled test meal. Seventeen males and 13 females (age 21.5 ± 6.6 years, body mass index 23.9 ± 2.8 kg/m2) participated in a randomized crossover study in which subjects chewed sugar-free gum for a total of 1 h (3 sessions of 20 min) on the test day (GC) and did not chew gum on a control day (NG). EE and RER were measured by indirect calorimetry after an overnight fast. Subjects consumed a breakfast shake containing 30% of their measured energy needs, and then postprandial EE and RER were measured for 3 h. Blood glucose (GLC) was measured in the fasting and postprandial states at regular intervals. Fasting EE was higher during GC (1.23 ± 0.04 kcal/min; 1 kcal = 4.2 kJ) than during NG (1.17 ± 0.04 kcal/min; p = 0.016). Postprandial EE was also higher during GC (1.46 ± 0.05 kcal/min) than during NG (1.42 ± 0.05 kcal/min; p = 0.037). Fasting and postprandial RER and GLC did not differ between GC and NG. The findings demonstrate that GC is associated with higher fasting and postprandial EE without altering blood glucose or substrate oxidation as measured by RER. These data suggest that gum chewing potentially could influence short-term energy balance in this population; however, longer-term research is needed.


2015 ◽  
Vol 4 ◽  
Author(s):  
Caroline Larsson ◽  
Øystein Ahlstrøm ◽  
Peter Junghans ◽  
Rasmus B. Jensen ◽  
Dominique Blache ◽  
...  

AbstractThe oral [13C]bicarbonate technique (o13CBT) was assessed for the determination of short-term energy expenditure (EE) under field conditions. A total of eight Alaskan huskies were fed two experimental diets in a cross-over experiment including two periods of 3 weeks. Effects of diets on EE, apparent total tract digestibility (ATTD) and on plasma hormones, blood lactate and glucose were furthermore investigated. The percentages of metabolisable energy derived from protein (P), fat (F) and carbohydrates (C) were 26:58:16 in the PFC diet and 24:75:1 in the PF diet. Measurements of EE were performed in the post-absorptive state during rest. Blood samples were collected during rest and exercise and ATTD was determined after days with rest and with exercise. EE was higher (P< 0·01) in period 2 than in period 1 (68v.48 kJ/kg body weight0·75per h). The ATTD of organic matter, crude protein and crude fat was higher (P< 0·01) in the PF diet compared with the PFC diet, and lower (P< 0·01) for total carbohydrates. Exercise did not affect ATTD. Higher (P< 0·01) insulin-like growth factor 1 and leptin concentrations were measured when fed the PF diet compared with the PFC diet. Concentrations of insulin decreased (P< 0·01), whereas cortisol and ghrelin increased (P< 0·05), after exercise. There was no effect of diet on blood lactate and glucose, but higher (P< 0·001) lactate concentrations were measured in period 1 than in period 2. The results suggest that the o13CBT can be used in the field to estimate short-term EE in dogs during resting conditions. Higher ATTD and energy density of the PF diet may be beneficial when energy requirements are high.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 405
Author(s):  
Anam Nawaz Khan ◽  
Naeem Iqbal ◽  
Rashid Ahmad ◽  
Do-Hyeun Kim

With the development of modern power systems (smart grid), energy consumption prediction becomes an essential aspect of resource planning and operations. In the last few decades, industrial and commercial buildings have thoroughly been investigated for consumption patterns. However, due to the unavailability of data, the residential buildings could not get much attention. During the last few years, many solutions have been devised for predicting electric consumption; however, it remains a challenging task due to the dynamic nature of residential consumption patterns. Therefore, a more robust solution is required to improve the model performance and achieve a better prediction accuracy. This paper presents an ensemble approach based on learning to a statistical model to predict the short-term energy consumption of a multifamily residential building. Our proposed approach utilizes Long Short-Term Memory (LSTM) and Kalman Filter (KF) to build an ensemble prediction model to predict short term energy demands of multifamily residential buildings. The proposed approach uses real energy data acquired from the multifamily residential building, South Korea. Different statistical measures are used, such as mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and R2 score, to evaluate the performance of the proposed approach and compare it with existing models. The experimental results reveal that the proposed approach predicts accurately and outperforms the existing models. Furthermore, a comparative analysis is performed to evaluate and compare the proposed model with conventional machine learning models. The experimental results show the effectiveness and significance of the proposed approach compared to existing energy prediction models. The proposed approach will support energy management to effectively plan and manage the energy supply and demands of multifamily residential buildings.


Sign in / Sign up

Export Citation Format

Share Document