scholarly journals Total energy expenditure assessed by salivary doubly labelled water analysis and its relevance for short-term energy balance in humans

2015 ◽  
Vol 30 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Stefano Guidotti ◽  
Berthe M. A. A. A. Verstappen-Dumoulin ◽  
Henk G. Jansen ◽  
Anita T. Aerts-Bijma ◽  
André A. van Vliet ◽  
...  
2005 ◽  
Vol 93 (5) ◽  
pp. 671-676 ◽  
Author(s):  
Colette Montgomery ◽  
John J. Reilly ◽  
Diane M. Jackson ◽  
Louise A. Kelly ◽  
Christine Slater ◽  
...  

Accurate measurement of energy intake (EI) is essential in studies of energy balance in all age groups. Reported values for EI can be validated against total energy expenditure (TEE) measured using doubly labelled water (DLW). Our previous work has indicated that the use of the standardized 24 h multiple pass recall (24 h MPR) method produces slight overestimates of EI in pre-school children which are inaccurate at individual level but acceptable at group level. To extend this work, the current study validated EI by 24 h MPR against TEE by DLW in sixty-three (thirty-two boys) school-aged children (median age 6 years). In both boys and girls, reported EI was higher than TEE, although this difference was only significant in the girls (median difference 420 kJ/d, P=0·05). On analysis of agreement between TEE and EI, the group bias was an overestimation of EI by 250 kJ/d with wide limits of agreement (−2880, 2380 kJ/d). EI was over-reported relative to TEE by 7 % and 0·9 % in girls and boys, respectively. The bias in the current study was lower than in our previous study of pre-school children, suggesting that estimates of EI become less inaccurate as children age. However, the current study suggests that the 24 h MPR is inaccurate at the individual level.


Author(s):  
Toshio Shimizu ◽  
Kazuko Ishikawa-Takata ◽  
Akiko Sakata ◽  
Utako Nagaoka ◽  
Noriko Ichihara ◽  
...  

2017 ◽  
Vol 49 (5S) ◽  
pp. 529
Author(s):  
William E. Kraus ◽  
Megan A. McCrory ◽  
Manjushiri Bhapkar ◽  
Edward P. Weiss ◽  
Corby K. Martin ◽  
...  

1999 ◽  
Vol 2 (3a) ◽  
pp. 335-339 ◽  
Author(s):  
Marleen A. Van Baak

AbstractEnergy expenditure rises above resting energy expenditure when physical activity is performed. The activity-induced energy expenditure varies with the muscle mass involved and the intensity at which the activity is performed: it ranges between 2 and 18 METs approximately. Differences in duration, frequency and intensity of physical activities may create considerable variations in total energy expenditure. The Physical Activity Level (= total energy expenditure divided by resting energy expenditure) varies between 1.2 and 2.2–2.5 in healthy adults. Increases in activity-induced energy expenditure have been shown to result in increases in total energy expenditure, which are usually greater than the increase in activity-induced energy expenditure itself. No evidence for increased spontaneous physical activity, measured by diary, interview or accelerometer, was found. However, this does not exclude increased physical activity that can not be measured by these methods. Part of the difference may also be explained by the post-exercise elevation of metabolic rate.If changes in the level of physical activity affect energy balance, this should result in changes in body mass or body composition. Modest decreases of body mass and fat mass are found in response to increases in physical activity, induced by exercise training, which are usually smaller than predicted from the increase in energy expenditure. This indicates that the training-induced increase in total energy expenditure is at least partly compensated for by an increase in energy intake. There is some evidence that the coupling between energy expenditure and energy intake is less at low levels of physical activity. Increasing the level of physical activity for weight loss may therefore be most effective in the most sedentary individuals.


Sign in / Sign up

Export Citation Format

Share Document